Log in

Optimization of Shaker Locations for Multiple Shaker Environmental Testing

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

For flight payloads or systems in free flight, Impedance Matched Multi-Axis Testing (IMMAT) can provide an accurate laboratory reproduction of the flight vibration environment at multiple response locations. IMMAT is performed by controlling multiple shakers attached to the system of interest, usually through slender rods so that the shakers impart negligible moments or shear forces at the attachment. The attachment usually requires that the shakers not physically support the system. Thus, IMMAT is different from other multi-degree of freedom testing where shakers for slip tables or with vertical bearings drastically change the impedance by their rigid attachment to the system or payload. Consequently, IMMAT shakers are generally smaller than used for traditional testing. In the laboratory IMMAT test, bungee cords can support the system to simulate free flight. For a system that is a flight payload, bungee cords can support a portion of the next level of assembly (such as a rack or rail) with the attached payload to greatly improve the laboratory reproduction of the payload environment with the approximate attachment impedance. Engineering judgment has historically been the basis for IMMAT test planning but provides no pre-test metrics to show whether the test setup can meet the desired requirements. For successful test planning, engineers need tools to optimize the number and location of shakers and predict the requirements for the shakers and amplifiers. Electrodynamic shakers and amplifiers have physical limitations such as maximum available amplifier current, voltage or power and shaker force or stroke. If shakers and amplifiers can barely meet required levels with a well-designed IMMAT test, improper shaker placement can cause exceedance of the limitations and failure of the test to meet required levels. We present a tool to optimize the number and locations of shakers with an objective function that performs a least square fit of the flight cross spectral density matrix while minimizing requirements on the amplifiers or shakers. In this work, an optimized IMMAT test with four shakers attached to a test article closely reproduces the vibration environment generated by a field acoustic test. The optimization is based on a model. The model consists of a modal model (derived from a finite element model) of the test article coupled to a simple calibrated electro-mechanical model of the shakers. The optimization selects shaker locations to minimize the required amplifier output voltage, but one can minimize shaker force, current, control error or some combination with appropriate physical limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Whiteman WE, Berman M Inadequacies in uniaxial stress screen vibration testing. J IEST:20–23 Fall 2001

    Article  Google Scholar 

  2. French, R. M.; Handy, R.; Cooper, H. L., “A comparison of simultaneous and sequential single-Axis durability testing,” Exp Tech, pp. 32–37, September/October 2006

  3. Smallwood, D. O., “An analytical study of a vibration test method using extremal control of acceleration and force”, Proceedings of Institute of Environmental Sciences 35th Annual Technical Meeting, 1989, pp. 263–271

  4. Scharton TD (1993) Force limited vibration testing at JPL. In: Proceedings of the 14th aerospace testing seminar, Manhattan Beach, California

  5. Scharton TD (1997) Force limited vibration testing. In: NASA reference publication RP-1403

    Google Scholar 

  6. Scharton TD (1995) Vibration-test force limits derived from frequency-shift method. J Spacecr Rocket 32:312–316

    Article  Google Scholar 

  7. Soucy Y (2011) On force limited vibration for testing space hardware. In: Proceedings of the 29th international modal analysis conference, Jacksonville, Florida

    Chapter  Google Scholar 

  8. Soucy Y, Klimas P (2011) Force limited vibration testing applied to the JWST FGS OA. Conference Proceedings of the Society for Experimental Mechanics Series 4:45–61

    Article  Google Scholar 

  9. Daborn PM, Ind PR, Ewins DJ (2014) Enhanced ground-based vibration testing for aerodynamic environments. Mech Syst Signal Process 49:165–180

    Article  Google Scholar 

  10. Daborn, P.M., Roberts, C., Ewins, D.J. and Ind, P.R., “Next-Generation Random Vibration Tests”, Topics in Modal Analysis II, Vol 8, Conference Proceedings of the Society for Experimental Mechanics Series, pp. 397–410, Springer, 2014

  11. Mayes, Randall L. and Rohe, Daniel P., "Physical vibration simulation of an acoustic environment with six shakers on an industrial structure ", Proceedings of the 34th international modal analysis conference, Orlando, FL, January 2019, paper 5818

  12. Soine, D.E., Jones, Jr., R.J., Harvie, J.M., Skousen, T.J., and Schoenherr, T.F., “Designing hardware for the boundary condition round robin challenge,” Topics in Modal Analysis and Testing, Vol 9, Conference Proceedings of the Society for Experimental Mechanics Series, pp. 119–126, Springer, 2019

  13. Lang GF, Snyder D (2001) Understanding the physics of electrodynamic shaker performance. Sound and Vibration, October, pp 2–10

    Google Scholar 

  14. de Klerk D, Rixen DJ, Voormeeren SN (2008) General framework for dynamic substructuring: history, review and classification of techniques. AIAA J 46(5):1169–1181

    Article  Google Scholar 

  15. Daborn, P.M., “Smarter dynamic testing of critical structures”, Doctoral Dissertation, University of Bristol, December 2014

  16. Elliott KB, Robinson J (1988) Estimation of distributed acoustic loads. In: Proceedings of the 6th international modal analysis conference, Kissimmee, Florida

Download references

Acknowledgements

This manuscript has been authored by National Technology and Engineering Solutions of Sandia, LLC. under Contract No. DE-NA0003525 with the U.S. Department of Energy/National Nuclear Security Administration. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mayes.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayes, R., Ankers, L., Daborn, P. et al. Optimization of Shaker Locations for Multiple Shaker Environmental Testing. Exp Tech 44, 283–297 (2020). https://doi.org/10.1007/s40799-019-00347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-019-00347-7

Keywords

Navigation