Log in

Peroxisome proliferator-activated receptor gamma expression in peripheral blood mononuclear cells and angiopoietin-like protein 4 levels in obese children and adolescents

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

The peroxisome proliferator-activated receptor γ (PPARγ) is highly expressed in adipose tissue and functions as transcriptional regulator of metabolism and adipocyte differentiation. Angiopoietin-like protein 4 (ANGPTL4), a central player in various aspects of energy homoeostasis, is induced by PPARγ. The aim of this study was to evaluate ANGPTL4 plasma levels and PPARγ gene expression in peripheral blood mononuclear cells (PBMCs) of children and adolescents with obesity and their association with metabolic parameters.

Methods

Seventy children and adolescents (35 obese and 35 age- and gender-matched control subjects), were selected. PBMCs were separated and their total RNA was extracted. After cDNA synthesis, PPARG gene expression was analyzed by real-time PCR. Relative differences in gene expression were calculated by ΔCt method using β-actin as a normalizer. Serum ANGPTL4 and insulin were measured using ELISA, and insulin resistance (IR) was calculated by the homeostatic model assessment of insulin resistance (HOMA-IR). Fasting plasma glucose (FPG), triglyceride, total cholesterol, LDL-C and HDL-C were also measured.

Results

The expression of the PPARG gene as well as the plasma ANGPTL4 levels were significantly diminished in obese subjects as compared to control ones. However, they were not significantly different in obese children with IR compared to obese children without IR or in those with or without metabolic syndrome. A significant positive correlation was found between PPARγ and ANGPTL4 (r = 0.364, p = 0.002). PPARγ expression levels were also significantly correlated with FPG (r = −0.35, p = 0.003).

Conclusion

PPARγ is decreased in childhood obesity and may be responsible for diminished ANGPTL4 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lobstein T, Baur L, Uauy R (2004) Obesity in children and young people: a crisis in public health. Obes Rev 5(s1):4–85

    Article  PubMed  Google Scholar 

  2. De Onis M, Blössner M, Borghi E (2010) Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 92(5):1257–1264

    Article  PubMed  Google Scholar 

  3. Sookoian S, Pirola CJ (2011) Metabolic syndrome: from the genetics to the pathophysiology. Curr Hypertens Rep 13(2):149–157

    Article  CAS  PubMed  Google Scholar 

  4. Harris M (2013) The metabolic syndrome. Aust Fam Phys 42:524–527

    Google Scholar 

  5. Lara-Castro C, Fu Y, Chung BH, Garvey WT (2007) Adiponectin and the metabolic syndrome: mechanisms mediating risk for metabolic and cardiovascular disease. Curr Opin Lipidol 18(3):263–270

    Article  CAS  PubMed  Google Scholar 

  6. Semple RK, Chatterjee VKK, O’Rahilly S (2006) PPARγ and human metabolic disease. J Clin Investig 116(3):581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lowell BB (1999) An essential regulator of adipogenesis and modulator of fat cell function: PPAR [gamma]. Cell 99(3):239–242

    Article  CAS  PubMed  Google Scholar 

  8. Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, Mandarino LJ, DeFronzo RA (2002) Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 87(6):2784–2791. doi:10.1210/jcem.87.6.8567

    Article  CAS  PubMed  Google Scholar 

  9. Ristow M, Müller-Wieland D, Pfeiffer A, Krone W, Kahn CR (1998) Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 339(14):953–959

    Article  CAS  PubMed  Google Scholar 

  10. Saltiel AR, Olefsky JM (1996) Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45(12):1661–1669

    Article  CAS  PubMed  Google Scholar 

  11. Barroso I, Gurnell M, Crowley V, Agostini M, Schwabe J, Soos M, Maslen GL, Williams T, Lewis H, Schafer A (1999) Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402(6764):880–883

    CAS  PubMed  Google Scholar 

  12. Fonseca VA, Valiquett TR, Huang SM, Ghazzi MN, Whitcomb RW (1998) Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study 1. J Clin Endocrinol Metab 83(9):3169–3176

    CAS  PubMed  Google Scholar 

  13. Chappuis B, Braun M, Stettler C, Allemann S, Diem P, Lumb PJ, Wierzbicki AS, James R, Christ ER (2007) Differential effect of pioglitazone (PGZ) and rosiglitazone (RGZ) on postprandial glucose and lipid metabolism in patients with type 2 diabetes mellitus: a prospective, randomized crossover study. Diabetes/Metab Res Rev 23(5):392–399

    Article  CAS  Google Scholar 

  14. Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, Tan MH, Khan MA, Perez AT, Jacober SJ (2005) A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 28(7):1547–1554

    Article  CAS  PubMed  Google Scholar 

  15. Halabi CM, Beyer AM, de Lange WJ, Keen HL, Baumbach GL, Faraci FM, Sigmund CD (2008) Interference with PPAR gamma function in smooth muscle causes vascular dysfunction and hypertension. Cell Metab 7(3):215–226. doi:10.1016/j.cmet.2007.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391(6662):82–86

    Article  CAS  PubMed  Google Scholar 

  17. Kadomatsu T, Tabata M, Oike Y (2011) Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases. FEBS J 278(4):559–564

    Article  CAS  PubMed  Google Scholar 

  18. Kim I, Moon S-O, Koh KN, Kim H, Uhm C-S, Kwak HJ, Kim N-G, Koh GY (1999) Molecular cloning, expression, and characterization of angiopoietin-related protein angiopoietin-related protein induces endothelial cell sprouting. J Biol Chem 274(37):26523–26528

    Article  CAS  PubMed  Google Scholar 

  19. Injune K, Hwan-Gyu K, Hyun K, Hong-Hee K, Park SK, Chang-Sub U, Lee ZH, Koh GY (2000) Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J 346(3):603–610

    Article  Google Scholar 

  20. Gerber M, Boettner A, Seidel B, Lammert A, Bar J, Schuster E, Thiery J, Kiess W, Kratzsch J (2005) Serum resistin levels of obese and lean children and adolescents: biochemical analysis and clinical relevance. J Clin Endocrinol Metab 90(8):4503–4509. doi:10.1210/jc.2005-0437

    Article  CAS  PubMed  Google Scholar 

  21. Oike Y, Akao M, Kubota Y, Suda T (2005) Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends Mol Med 11(10):473–479

    Article  CAS  PubMed  Google Scholar 

  22. Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, Friedman JM, Holmes WE, Spiegelman BM (2000) Peroxisome proliferator-activated receptor γ target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 20(14):5343–5349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshida K, Shimizugawa T, Ono M, Furukawa H (2002) Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res 43(11):1770–1772

    Article  CAS  PubMed  Google Scholar 

  24. Sanderson LM, Degenhardt T, Koppen A, Kalkhoven E, Desvergne B, Müller M, Kersten S (2009) Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) but not PPARα serves as a plasma free fatty acid sensor in liver. Mol Cell Biol 29(23):6257–6267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim H-K, Youn B-S, Shin M-S, Namkoong C, Park KH, Baik JH, Kim JB, Park J-Y, K-u Lee, Kim Y-B (2010) Hypothalamic Angptl4/Fiaf is a novel regulator of food intake and body weight. Diabetes 59(11):2772–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu P, Tan MJ, Huang R-L, Tan CK, Chong HC, Pal M, Lam CRI, Boukamp P, Pan JY, Tan SH (2011) Angiopoietin-like 4 protein elevates the prosurvival intracellular O2 : H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 19(3):401–415

    Article  CAS  PubMed  Google Scholar 

  27. Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E, Mekid H, Mir LM, Opolon P, Corvol P (2006) Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci 103(49):18721–18726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Padua D, Zhang XH-F, Wang Q, Nadal C, Gerald WL, Gomis RR, Massagué J (2008) TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133(1):66–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ito Y, Oike Y, Yasunaga K, Hamada K, Miyata K, S-i Matsumoto, Sugano S, Tanihara H, Masuho Y, Suda T (2003) Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Can Res 63(20):6651–6657

    CAS  Google Scholar 

  30. Le Jan S, Amy C, Cazes A, Monnot C, Lamandé N, Favier J, Philippe J, Sibony M, Gasc J-M, Corvol P (2003) Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol 162(5):1521–1528

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, Tan CK, Huang R-L, Sze SK, Tang MBY (2010) Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J Biol Chem 285(43):32999–33009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lichtenstein L, Mattijssen F, de Wit NJ, Georgiadi A, Hooiveld GJ, van der Meer R, He Y, Qi L, Köster A, Tamsma JT (2010) Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab 12(6):580–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clement LC, Avila-Casado C, Macé C, Soria E, Bakker WW, Kersten S, Chugh SS (2011) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17(1):117–122

    Article  CAS  PubMed  Google Scholar 

  34. Kersten S (2009) Angiopoietin-like proteins and lipid metabolism. In: Cellular lipid metabolism. Springer, Heidelberg, Germany pp 237–249

  35. Lichtenstein L, Kersten S (2010) Modulation of plasma TG lipolysis by Angiopoietin-like proteins and GPIHBP1. Biochimica et Biophysica Acta (BBA)-Mol Cell Biol Lipids 1801(4):415–420

    CAS  Google Scholar 

  36. Kersten S, Lichtenstein L, Steenbergen E, Mudde K, Hendriks HFJ, Hesselink MK, Schrauwen P, Müller M (2009) Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc Biol 29(6):969–974. doi:10.1161/atvbaha.108.182147

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Han B, Zhang Z, Pan J, **a H (2010) Expression of angiopoietin-like 4 and tenascin C but not cathepsin C mRNA predicts prognosis of oral tongue squamous cell carcinoma. Biomarkers 15(1):39–46

    Article  CAS  PubMed  Google Scholar 

  38. Cook S, Auinger P, Huang TTK (2009) Growth curves for cardio-metabolic risk factors in children and adolescents. J Pediatr 155(3):S6.e15–S16.e26. doi:10.1016/j.jpeds.2009.04.051

    Article  Google Scholar 

  39. Bergman RN, Finegood DT, Ader M (1985) Assessment of insulin sensitivity in vivo. Endocr Rev 6(1):45–86. doi:10.1210/edrv-6-1-45

    Article  CAS  PubMed  Google Scholar 

  40. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 115(4):e500–e503. doi:10.1542/peds.2004-1921

    Article  PubMed  Google Scholar 

  41. Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, Wong G, Bennett P, Shaw J, Caprio S (2007) The metabolic syndrome in children and adolescents. Lancet 369(9579):2059–2061. doi:10.1016/s0140-6736(07)60958-1

    Article  PubMed  Google Scholar 

  42. Oliver P, Reynés B, Caimari A, Palou A (2013) Peripheral blood mononuclear cells: a potential source of homeostatic imbalance markers associated with obesity development. Pflügers Arch Eur J Physiol 465(4):459–468. doi:10.1007/s00424-013-1246-8

    Article  CAS  Google Scholar 

  43. Akyurek N, Aycan Z, Cetinkaya S, Akyurek O, Yilmaz Agladioglu S, Ertan U (2013) Peroxisome proliferator activated receptor (PPAR)-gamma concentrations in childhood obesity. Scand J Clin Lab Invest 73(4):355–360. doi:10.3109/00365513.2013.786121

    Article  PubMed  Google Scholar 

  44. Li X, Lindquist S, Angsten G, Yi J, Olsson T, Hernell O (2008) Adiponectin and peroxisome proliferator-activated receptor γ expression in subcutaneous and omental adipose tissue in children. Acta Paediatr 97(5):630–635. doi:10.1111/j.1651-2227.2008.00715.x

    Article  CAS  PubMed  Google Scholar 

  45. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8(10):1224–1234

    Article  CAS  PubMed  Google Scholar 

  46. Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J (1998) A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 20(3):284–287

    Article  CAS  PubMed  Google Scholar 

  47. Larsen TM, Toubro S, Astrup A (2003) PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disorders 27(2):147–161. doi:10.1038/sj.ijo.802223

    Article  CAS  Google Scholar 

  48. Vidal-Puig A, Jimenez-Liñan M, Lowell BB, Hamann A, Hu E, Spiegelman B, Flier JS, Moller DE (1996) Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Investig 97(11):2553–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kintscher U, Law RE (2005) PPARγ-mediated insulin sensitization: the importance of fat versus muscle. Am J Physiol Endocrinol Metab 288(2):E287–E291. doi:10.1152/ajpendo.00440.2004

    Article  CAS  PubMed  Google Scholar 

  50. Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, Gonzalez FJ, Desvergne B, Wahli W (2000) Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem 275(37):28488–28493

    Article  CAS  PubMed  Google Scholar 

  51. Wiesner G, Morash BA, Ur E, Wilkinson M (2004) Food restriction regulates adipose-specific cytokines in pituitary gland but not in hypothalamus. J Endocrinol 180(3):R1–R6

    Article  CAS  PubMed  Google Scholar 

  52. Lichtenstein L, Berbée JF, van Dijk SJ, van Dijk KW, Bensadoun A, Kema IP, Voshol PJ, Müller M, Rensen PC, Kersten S (2007) Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL-and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol 27(11):2420–2427

    Article  CAS  PubMed  Google Scholar 

  53. Ruge T, Sukonina V, Kroupa O, Makoveichuk E, Lundgren M, Svensson MK, Olivecrona G, Eriksson JW (2012) Effects of hyperinsulinemia on lipoprotein lipase, angiopoietin-like protein 4, and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in subjects with and without type 2 diabetes mellitus. Metabolism 61(5):652–660

    Article  CAS  PubMed  Google Scholar 

  54. Robciuc MR, Naukkarinen J, Ortega-Alonso A, Tyynismaa H, Raivio T, Rissanen A, Kaprio J, Ehnholm C, Jauhiainen M, Pietiläinen KH (2011) Serum angiopoietin-like 4 protein levels and expression in adipose tissue are inversely correlated with obesity in monozygotic twins. J Lipid Res 52(8):1575–1582. doi:10.1194/jlr.P015867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gealekman O, Burkart A, Chouinard M, Nicoloro SM, Straubhaar J, Corvera S (2008) Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab 295(5):E1056–E1064. doi:10.1152/ajpendo.90345.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhu P, Goh YY, Chin HF, Kersten S, Tan NS (2012) Angiopoietin-like 4: a decade of research. Biosci Rep 32(3):211–219. doi:10.1042/bsr20110102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Farideh Razi, Dr. Camelia Rambod and the staff of Diabetes Clinic 1 laboratory for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nourbakhsh.

Ethics declarations

Funding

This research was financially supported by Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences (Grant Number: 1392-01-104-1607).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by ethics committee of Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghabadi, Z.A., Nourbakhsh, M., Alaee, M. et al. Peroxisome proliferator-activated receptor gamma expression in peripheral blood mononuclear cells and angiopoietin-like protein 4 levels in obese children and adolescents. J Endocrinol Invest 41, 241–247 (2018). https://doi.org/10.1007/s40618-017-0730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0730-y

Keywords

Navigation