Log in

Low-Level Cadmium Exposure and Atherosclerosis

  • Metals and Health (R Fry, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cadmium has been recognized as a potential risk factor for cardiovascular disease (CVD). We present a review of cadmium toxicity, its effect on cellular activities, and a summary of reported association between environmental cadmium exposure and CVD. We also discuss the possible therapeutic benefit of cadmium chelation.

Recent Findings

Experimental data suggest that cadmium affects several signaling pathways which may lead to endothelial dysfunction and vascular tissue damage, promoting atherosclerosis. This is further supported by epidemiological studies that have shown an association of even low-level cadmium exposure with an increased risk of clinical cardiovascular events. The Trial to Assess Chelation Therapy (TACT) provided inferential evidence for the cardiovascular benefit of treating toxic metal burden. However, at the present time, there is no direct evidence, but suggestive findings from clinical trials indicating that removal of cadmium from body stores may be associated with improved cardiovascular outcomes.

Summary

An evolving body of evidence supports environmental cadmium exposure as a pro-atherosclerosis risk factor in CVD; however, the mechanisms for the proatherogenic effect of cadmium are still not completely understood. Further studies in translational toxicology are needed to fill the knowledge gaps regarding the molecular mechanisms of cadmium toxicity and the promotion of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

CVD:

Cardiovascular disease

TACT:

Trial to assess chelation therapy

MI:

Myocardial infarction

Ca2+ :

Calcium

SMCs:

Smooth muscle cells

VDCC:

Voltage-dependent calcium channels

IP3:

Inositol triphosphate

PKC:

Protein kinase C

CAMK:

Calmodulin dependent enzyme

MAPK:

Mitogen-activated protein kinase

NO:

Nitric oxide

PON1:

Paraoxonase 1

NF-kB:

Nuclear factor kappa B

NHANES:

National Health and Nutrition Examination Survey

PAD:

Peripheral arterial disease

RNA:

Ribonucleic acid

EDTA:

Edetate disodium

BAL:

Dimercapral

DMPS:

Dimercaptopropanesulfonic acid

DMSA:

Dimercaptosuccinic acid

LDL:

Low-density lipoprotein

OR:

Odds ratio

HR:

Hazard ratio

CI:

Confidence interval

NNT:

Number needed to treat

CLI:

Critical limb ischemia

References

  1. Agency for Toxic Substances and Disease Registry. Toxicological profile for cadmium; Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services: Atlanta, GA, USA, 2012; pp. 1–487.

  2. International Agency for Research on Cancer (IARC) [Accessed July 2013]; Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. 1993 Available online at: http://monographs.iarc.fr/ENG/Monographs/vol58/

  3. Nordberg GF, Nogawa K, Nordberg M, Friberg L. Handbook on the toxicology of metals: cadmium. Amsterdam, Elsevier; 2007. p. 445–86.

  4. Staessen JA, Vyncke G, Lauwerys RR, Roles HA, Celis HG, Claeys F, et al. Transfer of cadmium from a sandy acidic soil to man: a population study. Environ Res. 1992;58(1):25–34.

    CAS  PubMed  Google Scholar 

  5. Grant CA, Sheppard SC. Fertilizer Impacts on Cadmium availability in agricultural soils and crops. Hum Ecol Risk Assess. 2008;14:210–28.

    CAS  Google Scholar 

  6. Roberts TL. Cadmium and phosphorous fertilizers: the issues and the science. Procedia Engineering. 2014;83:52–9.

    CAS  Google Scholar 

  7. U.S. Geological Survey, 2018, Mineral resources data system: commodity statistics and information available online at https://minerals.usgs.gov/minerals/pubs/commodity/cadmium/. (Accessed May 14, 2018)

  8. Pacyna JM, Pacyna EG. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev. 2001;9(4):269–98.

    CAS  Google Scholar 

  9. Satarug S, Baker JR, Urbenjapol S, Haswell EM, Reilly PE, Williams DJ, et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett. 2003;137:65–83.

    CAS  PubMed  Google Scholar 

  10. Miranda M, Lopez Alonso ML, Castillo C, Hernandez J, Benedito JL. Cadmium levels in liver, kidney and meat in calves from Asturias (North Spain). Eur Food Res Technol. 2001;212:426–30.

    CAS  Google Scholar 

  11. Jarup L, Akesson A. Current status of cadmium as an environmental health Problem. Toxicol Appl Pharmacol. 2009;238(3):201–8.

    PubMed  Google Scholar 

  12. Asgher M, Khan MIR, Anjum NA, Khan NA. Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma. 2015;252(2):399–413.

    CAS  PubMed  Google Scholar 

  13. Pappas RS, Polzin GM, Zhang L, Watson CH, Paschal DC, Ashley DL. Cadmium, lead, and thallium in mainstream tobacco smoke particulate. Food Chem Toxicol. 2006;44:714–23.

    CAS  PubMed  Google Scholar 

  14. Tellez-Plaza M, Navas-Acien A, Caldwell KL, Menke A, Muntner P, Guallar E. Reduction in cadmium exposure in the United States population, 1988–2008: the contribution of declining smoking rates. Environ Health Perspect. 2012;120:204–9.

    CAS  PubMed  Google Scholar 

  15. Klaassen CD, Lui J, Choudhuri S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol. 1999;39:267–94.

    CAS  PubMed  Google Scholar 

  16. Kawada T, Shinmyo RR, Suzuki S. Changes in urinary cadmium excretion among pigment workers with improvement of the work environment. Ind Health. 1993;31(4):165–70.

    CAS  PubMed  Google Scholar 

  17. Friberg L. Cadmium and the kidney. Environ Health Perspect. 1984;54:1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables, Centers for Disease Control and Prevention National Center for Environmental Health. March 2018: http://www.cdc.gov/exposurereport

  19. Navas-Acien A, Selvin E, Sharrett AR, Calderon-Aranda E, Silbergeld E, Guallar E. Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation. 2004;109:3196–201.

    CAS  PubMed  Google Scholar 

  20. Zhuang X, Ni A, Liao L, Guo Y, Dai W, Jiang Y, et al. Environment-Wide Association study to identify novel factors associated with peripheral arterial disease: evidence from the National Health and Nutrition Examination Survey (1999–2004). Atherosclerosis. 2018;269:172–7.

    CAS  PubMed  Google Scholar 

  21. Ujueta F, Arenas IA, Diaz D, Yates T, Beasley R, Navas-Acien A, et al. Cadmium level and severity of peripheral artery disease in patients with coronary artery disease. Eur J Prev Cardiol. 2018;26(13):1456–8.

    PubMed  Google Scholar 

  22. Everett CJ, Frithsen IL. Association of urinary cadmium and myocardial infarction. Environ Res. 2008;106(2):284–6.

    CAS  PubMed  Google Scholar 

  23. Menke A, Muntner P, Silbergeld EK, Platz EA, Guallar E. Cadmium levels. in urine and mortality among U.S. adults. Environ Health Perspect. 2009;117:190–6.

    CAS  PubMed  Google Scholar 

  24. Vahter M, Akesson A, Lidén C, Ceccatelli S, Berglund M. Gender differences in the disposition and toxicity of metals. Environ Res. 2007;104(1):85–95.

    CAS  PubMed  Google Scholar 

  25. Zacharski LR, Ornstein DL, Woloshin S, Schwartz LM. Association of age, sex, and race with body iron stores in adults: analysis of NHANES III data. AMJ. 2000;140(1):98–104.

    CAS  Google Scholar 

  26. Peters JL, Perlstein TS, Perry MJ, McNeely E, Weuve J. Cadmium exposure in association with history of stroke and heart failure. Environ Res. 2010;110(2):199–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Agarwal S, Zaman T, Tuzcu EM, Kapadia SR. Heavy metals and cardiovascular disease: results from the National Health and Nutrition Examination Survey (NHANES) 1999–2006. Angiology. 2011;62:422–9.

    PubMed  Google Scholar 

  28. Tellez-Plaza M, Navas-Acien A, Menke A, Crainiceanu CM, Pastor-Barriuso R, Guallar E. Cadmium exposure and all-cause and cardiovascular mortality in the U.S. General Population. Environ Health Perspect. 2012;120:1017–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tellez-Plaza M, Guallar E, Howard BV, Umans JG, Francesconi KA, Goessler W, et al. Cadmium exposure and incident cardiovascular disease. Epidemiology. 2013;24:421–9.

    PubMed  PubMed Central  Google Scholar 

  30. Tellez-Plaza M, Guallar E, Fabsitz RR, Howard BV, Umans JG, Framcesconi KA, et al. Cadmium exposure and incident peripheral arterial disease. Circ Cardiovasc Qual Outcomes. 2013;6(6):626–33.

    PubMed  PubMed Central  Google Scholar 

  31. Ruiz-Hernandez A, Navas-Acien A, Pastor-Barriuso R, Crainiceanu CM, Redon J, Guallar E, et al. Declining exposures to lead and cadmium contribute to explaining the reduction of cardiovascular mortality in the US population, 1988-2004. Int J Epidemiol. 2017;46(6):1903–12.

    PubMed  PubMed Central  Google Scholar 

  32. Prozialeck WC, Edwards JR, Nebert DW, Woods JM, Barchowsky A, Atchison WD. The vascular system as a target of metal toxicity. Toxicol Sci. 2008;102:207–18.

    CAS  PubMed  Google Scholar 

  33. Chen J, Wen J, Wang N, Wang C, Xu Q, Yang Y. Ion channels and vascular diseases. Arterioscler Thromb Vasc Biol. 2019;39:146–56.

    CAS  Google Scholar 

  34. Hinkle PM, Kinsella PA, Osterhoudt KC. Cadmium uptake and toxicity via voltage-sensitive calcium channels. J Biol Chem. 1987;262(34):16333–7.

    CAS  PubMed  Google Scholar 

  35. Bridges CC, Zalups RK. Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol. 2005;204(3):274–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Blazka ME, Shaikh ZA. Differences in cadmium and mercury uptakes by hepatocytes: role of calcium channels. Toxicol Appl Pharmacol. 1991;110(2):355–63.

    CAS  PubMed  Google Scholar 

  37. Varoni MV, Palomba D, Demontis MP, Gianorso S, Pais GL, Anania V. Role of the brain renin-angiotensin system in blood pressure regulation. Vet Res Commun. 2007;31(Suppl. 1):343–6.

    PubMed  Google Scholar 

  38. Washington B, Williams S, Armstrong P, Mtshali C, Robinson JT, Myles EL. Cadmium toxicity on arterioles vascular smooth muscle cells of spontaneously hypertensive rats. Int J Environ Res Public Health. 2006;3(4):323–8.

    CAS  PubMed  Google Scholar 

  39. Suzuki Y, Chao SH, Zysk JR, Cheung WY. Stimulation of calmodulin by cadmium ion. Arch Toxicol. 1985;57:205–11.

    CAS  PubMed  Google Scholar 

  40. Clarke MCH, Littlewood TD, Figg N, Maguire JJ, Davenport AP, Goddard M, et al. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res. 2008;102:1529–38.

    CAS  PubMed  Google Scholar 

  41. Greif DM, Sacks DB, Michel T. Calmodulin phosphorylation and modulation of endothelial nitric oxide synthase catalysis. PNAS. 2004;101(5):1165–70.

    CAS  PubMed  Google Scholar 

  42. Moncada S. Nitric oxide: Discovery and impact on clinical medicine. J R Soc Med. 1999;92:164–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Skoczynska A, Martynowicz H. The impact of subchronic cadmium poisoning on the vascular effect of nitric oxide in rats. Hum Exp Toxicol. 2005 Jul;24(7):353–61.

    CAS  PubMed  Google Scholar 

  44. Hechtenberg S, Beyermann D. Inhibition of sarcoplasmic reticulum Ca (2+)-.ATPase activity by cadmium, lead and mercury. Enzyme. 1991;45:109–15.

    CAS  PubMed  Google Scholar 

  45. Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium induced apoptosis. Cell Calcium. 2008;43:184–95.

    CAS  PubMed  Google Scholar 

  46. Prozialeck WC. Evidence that E-cadherin may be a target for cadmium toxicity in epithelial cells. Toxicol Appl Pharmacol. 2000;164(3):231–49.

    CAS  PubMed  Google Scholar 

  47. Afolabi OK, Oyewo EB, Adekunle AS, Adedosu OT, Adedeji AL. Impaired lipid levels and inflammatory response in rats exposed to cadmium. EXCLI J. 2012;11:677–87 Published 2012 Sep 27.

    PubMed  PubMed Central  Google Scholar 

  48. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88(6):1785–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ikediobi CO, Badisa VL, Ayuk-Takem LT, Latinwo LM, West J. Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells. Int J Mol Med. 2004;14:87–92.

    CAS  PubMed  Google Scholar 

  50. Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology. 2003;192:95–117.

    CAS  PubMed  Google Scholar 

  51. Bhattacharyya T, Nicholls SJ, Topol EJ, Zhang R, Yang X, Schmitt D, et al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA. 2008;299(11):1265–76.

    CAS  PubMed  Google Scholar 

  52. Pollack AZ, Sjaarda L, Ahrens KA, Mumford SL, Browne RW, Wactawski-Wende J, et al. Association of cadmium, lead and mercury with paraoxonase 1 Activity in women. PLoS One. 2014;9(3):e92152.

    PubMed  PubMed Central  Google Scholar 

  53. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation. 1995;91:2703–11.

    CAS  PubMed  Google Scholar 

  54. Messner B, Knoflach M, Seubert A, Ritsch A, Pfaller K, Henderson B. Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance. Arterioscler Thromb Vasc Biol. 2009;29(9):1392–8.

    CAS  PubMed  Google Scholar 

  55. Perkins ND. Integrating cell-signaling pathways with NF- kappa B and IKK function. Nat Rev Mol Cell Biol. 2007;8:49–62.

    CAS  PubMed  Google Scholar 

  56. **e J, Shaikh ZA. Cadmium-induced apoptosis in rat kidney epithelial cells involves decrease in nuclear factor-kappa B activity. Toxicol Sci. 2006;91:299–308.

    CAS  PubMed  Google Scholar 

  57. Shumilla JA, Wetterhahn KE, Barchowsky A. Inhibition of NF-kappa B binding to DNA by chromium, cadmium, mercury, zinc, and arsenite in vitro: evidence of a thiol mechanism. Arch Biochem Biophys. 1998;349(2):356–62.

    CAS  PubMed  Google Scholar 

  58. Hart BA, Lee CH, Shukla GS, Shukla A, Osier M, Eneman JD, et al. Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress. Toxicology. 1999;133:43–58.

    CAS  PubMed  Google Scholar 

  59. Vacchi-Suzzi C, Porucznik CA, Cox KJ, Zhao Y, Ahn H, Harrington JM, et al. Temporal variability of urinary cadmium in spot urine samples and first morning voids. J Expos Sci Environ Epidemiol. 2016;27:160–6. https://doi.org/10.1038/jes.2016.2.

    Article  CAS  Google Scholar 

  60. Meliker JR, Vacchi-Suzzi C, Harrington J, Levine K, Lui L-Y, Bauer DC, et al. Temporal stability of urinary cadmium in samples collected several years apart in a population of older persons. Int J Hyg Environ Health. 2019;222:230–4.

    CAS  PubMed  Google Scholar 

  61. Chaumont A, Voisin C, Deumer G, Haufroid V, Annesi-Maesano I, Roles H, et al. Associations of urinary cadmium with age and urinary proteins: further evidence of physiological variations unrelated to metal accumulation and toxicity. Environ Health Perspect. 2013;121(9):1047–53.

    PubMed  PubMed Central  Google Scholar 

  62. Weaver VM, Kim NS, Lee BK, Parsons PJ, Spector J, Fadrowski J, et al. Differences in urine cadmium associations with kidney outcomes based on serum creatinine and cystatin C. Environ Res. 2011;111(8):1236–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chaumont A, Nickmilder M, Dumont X, Lundh T, Skerfving S, Bernard A. Associations between proteins and heavy metals in urine at low environmental exposures: evidence of reverse causality. Toxicol Lett. 2012;210:345–52.

    CAS  PubMed  Google Scholar 

  64. Lauwerys RR, Bernard AM, Roels HA, Buchet JP. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem. 1994;40(7 Pt 2):1391–4.

    CAS  PubMed  Google Scholar 

  65. Adams SV, Newcomb PA. Cadmium blood and urine concentrations as measures of exposure: NHANES 1999–2010. J Expo Sci Environ Epidemiol. 2014;24:163–70.

    CAS  PubMed  Google Scholar 

  66. Chung J, Nartey NO, Cherian MG. Metallothionein levels in liver and kidney of Canadians--a potential indicator of environmental exposure to cadmium. Arch Environ Health. 1986;41(5):319–23.

    CAS  PubMed  Google Scholar 

  67. Hejlmajer HE, Drasch GA, Kretschmer E, Summer KH. Metallothionein,cadmium, copper and zinc in human and rat tissues. Toxicol Lett. 1987;38(3):205–11.

    Google Scholar 

  68. Bremner I, Mehra RK, Sato M. Metallothionein in blood, bile and urine. Experientia Suppl. 1987;52:507–17.

    CAS  PubMed  Google Scholar 

  69. Ochi T, Otsuka F, Takahashi K, Ohsawa M. Glutathione and metallothioneins as cellular defense against cadmium toxicity in cultured Chinese hamster cells. Chem Biol Interact. 1988;65(1):1–14.

    CAS  PubMed  Google Scholar 

  70. Wijesekara N, Chimienti F, Wheeler MB. Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab. 2009;11(Suppl 4):202–14.

    CAS  PubMed  Google Scholar 

  71. Man AK, Woo NY. Upregulation of metallothionein and glucose-6-phosphate dehydrogenase expression in silver sea bream, Sparus sarba exposed to sublethal levels of cadmium. Aquat Toxicol. 2008;89:214–21.

    CAS  PubMed  Google Scholar 

  72. Shariati F, Esaili SA, Mashinchian A, Pourkazemi M. Metallothionein as potential biomarker of cadmium exposure in Persian sturgeon (Acipenser persicus). Biol Trace Elem Res. 2011 Oct;143(1):281–91.

    CAS  PubMed  Google Scholar 

  73. Wang B, Li Y, Shao C, Tan Y, Cai L. Cadmium and its epigenetic effects. Curr Med Chem. 2012;19(16):2611–20.

    CAS  PubMed  Google Scholar 

  74. Khalil CA. The Emerging Role of epigenetics in cardiovascular disease. Ther Adv Chronic Dis. 2014;5(4):178–87.

    CAS  Google Scholar 

  75. Domingo-Relloso A, Riffo-Campos AL, Rentero-Garrido P, Ladd-Acosta C, Fallin DM, Tang WY, et al. Cadmium, smoking, and human blood dna methylation profiles in adults from the strong heart study. Environ Health Perspect. 2020;128(6):067005. https://doi.org/10.1289/EHP6345.

    Article  CAS  PubMed Central  Google Scholar 

  76. Lemaire J, Van der Hauwaert C, Savary G, Dewaeles E, Perrais M, Lo Guidice JM, et al. Cadmium-induced renal cell toxicity is associated with microRNA deregulation. Int J Toxicol. 2020;39(2):103–14.

    CAS  PubMed  Google Scholar 

  77. Gu S, Dai J, Qu T, He Z. Emerging Roles of MicroRNAs and Long Noncoding RNAs in Cadmium Toxicity. Biol Trace Elem Res. 2020;195:481–90.

    CAS  PubMed  Google Scholar 

  78. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1516–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yuanyuan W, Jahantigh M, Neth P, Weber C, Schober A. MicroRNA-126, -145, and -155. Arterioscler Thromb Vasc Biol. 2013;33:449–54.

    Google Scholar 

  80. Waters RS, Bryden NA, Patterson KY, Veillon C, Anderson RA. EDTA Chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc. Biol Trace Elem Res. 2001;83:207–21.

    CAS  PubMed  Google Scholar 

  81. Arenas IA, Navas-Acien A, Erqui I, Lamas GA. Enhanced Vasculotoxic metal excretion in post-MI patients after edetate disodium therapy. J Am Coll Cardiol. 2016;67(13 Suppl):A2125.

    Google Scholar 

  82. Clarke NE, Clarke CN, Mosher RE. The in vivo dissolution of metastatic calcium. An approach to atherosclerosis. Am J Med Sci. 1955;229:142–9.

    CAS  PubMed  Google Scholar 

  83. Clarke CN, Clarke NE, Mosher RE. Treatment of angina pectoris with disodium ethylene diamine tetra acetic acid. Am J Med Sci. 1956;232:654–66.

    CAS  PubMed  Google Scholar 

  84. Guldager B, Jelnes R, Jorgensen SJ, Nielsen JS, Klaerke A, Mogensen K, et al. EDTA treatment of intermittent claudication--a double-blind, placebo-controlled study. J Intern Med. 1992;231(3):261–7.

    CAS  PubMed  Google Scholar 

  85. van Rij AM, Solomon C, Packer SG, Hopkins WG. Chelation Therapy for intermittent claudication. A double-blind, randomized, controlled trial. Circulation. 1994;90(3):1194–9.

    PubMed  Google Scholar 

  86. Knudtson ML, Wyse DG, Galbraith PD, Brant R, Hildebrand K, Paterson D, et al. Chelation therapy for ischemic heart disease: a randomized controlled trial. JAMA. 2002;287(4):481–6.

    CAS  PubMed  Google Scholar 

  87. Lamas GA, Goertz C, Boineau R, Mark DB, Rozema T, Nahin RL, et al. Design of the trial to access chelation therapy. Am Heart J. 2012;163:7–12.

    PubMed  PubMed Central  Google Scholar 

  88. Lamas GA, Goertz C, Boineau R, Mark DB, Rozema T, Nahin RL, et al. Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: the TACT randomized trial. JAMA. 2013;309:1241–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Escolar E, Lamas GA, Mark DB, Boineau R, Goertz C, Rosenberg Y, et al. The effect of an EDTA-based chelation regimen on patients with diabetes mellitus and prior myocardial infarction in the Trial to Assess Chelation Therapy (TACT). Circ Cardiovasc Qual Outcomes. 2014;7:15–24.

    PubMed  Google Scholar 

  90. Ujueta F, Arenas IA, Escolar E, Diaz D, Boineau R, Mark DB, et al. The effect of EDTA-based chelation on patients with diabetes and peripheral artery disease in the Trial to Assess Chelation Therapy (TACT). J Diabetes Complicat. 2019;33:490–4.

    PubMed Central  Google Scholar 

  91. Arenas IA, Ujueta F, Diaz D, Navas-Acien A, Beasley R, Yates T, et al. Limb preservation using edetate disodium-based chelation in patients with diabetes and critical limb ischemia: an open-label pilot study. Cureus. 2019;11(12):e6477.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan A. Arenas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metals and Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, D., Ujueta, F., Mansur, G. et al. Low-Level Cadmium Exposure and Atherosclerosis. Curr Envir Health Rpt 8, 42–53 (2021). https://doi.org/10.1007/s40572-021-00304-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-021-00304-w

Keywords

Navigation