Log in

Automated classification of focal breast lesions according to S-detect: validation and role as a clinical and teaching tool

  • Original Article
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Purpose

To assess the diagnostic performance and the potential as a teaching tool of S-detect in the assessment of focal breast lesions.

Methods

61 patients (age 21–84 years) with benign breast lesions in follow-up or candidate to pathological sampling or with suspicious lesions candidate to biopsy were enrolled. The study was based on a prospective and on a retrospective phase. In the prospective phase, after completion of baseline US by an experienced breast radiologist and S-detect assessment, 5 operators with different experience and dedication to breast radiology performed elastographic exams. In the retrospective phase, the 5 operators performed a retrospective assessment and categorized lesions with BI-RADS 2013 lexicon. Integration of S-detect to in-training operators evaluations was performed by giving priority to S-detect analysis in case of disagreement. 2 × 2 contingency tables and ROC analysis were used to assess the diagnostic performances; inter-rater agreement was measured with Cohen’s k; Bonferroni’s test was used to compare performances. A significance threshold of p = 0.05 was adopted.

Results

All operators showed sensitivity > 90% and varying specificity (50–75%); S-detect showed sensitivity > 90 and 70.8% specificity, with inter-rater agreement ranging from moderate to good. Lower specificities were improved by the addition of S-detect. The addition of elastography did not lead to any improvement of the diagnostic performance.

Conclusions

S-detect is a feasible tool for the characterization of breast lesions; it has a potential as a teaching tool for the less experienced operators.

Riassunto

Obiettivi

Valutare la performance diagnostica ed il potenziale come strumento didattico dell’S-detect nella valutazione delle lesioni mammarie focali.

Metodi

Sono state arruolate 61 pazienti (età: 21–84 anni) con lesioni mammarie benigne in follow-up o con lesioni sospette per malignità candidate a biopsia. Lo studio è stato basato su una fase prospettica ed una retrospettiva. Nella fase prospettica, dopo il completamento dell’ecografia di base da parte di un senologo esperto, 5 operatori con differente livello di esperienza e differentemente dedicati alla senologia hanno eseguito l’esame elastosonografico. Nella fase retrospettiva, i 5 operatori hanno eseguito una valutazione e categorizzazione delle lesioni con BI-RADS 2013. L’integrazione dell’S-detect con la valutazione degli operatori in formazione è stata eseguita dando priorità all’analisi del software in caso di discordanza. Sono state impiegate le tabelle di contingenza 2 × 2 e le curve ROC per valutare le performance diagnostiche; la concordanza tra gli operatori è stata misurata con il test k di Cohen; il test di Bonferroni è stato impiegato per comparare le performance. È stata adottata una soglia di significatività pari a p = 0.05.

Risultati

Tutti gli operatori hanno dimostrato una sensibilità > 90% e specificità variabile (50–75%); l’S-detect ha dimostrato una sensibilità > 90% e specificità del 70,8%, con concordanza con gli operatori compresa tra moderata e buona. Le specificità più basse sono state aumentate dall’aggiunta dell’S-detect. L’aggiunta dell’elastosonografia non ha determinato aumento delle performance diagnostiche.

Conclusioni

L’S-detect è uno strumento impiegabile nella caratterizzazione delle lesioni mammarie ed è un potenziale strumento didattico per gli operatori meno esperti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hooley RJ, Scoutt LM, Philpotts LE (2013) Breast ultrasonography: state of the art. Radiology 268:642–659. https://doi.org/10.1148/radiol.13121606

    Article  PubMed  Google Scholar 

  2. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA (2013) ACR BI-RADS® Atlas, breast imaging reporting and data system, 5th edn. American College of Radiology, Reston

    Google Scholar 

  3. Rao AA, Feneis J, Lalonde C, Ojeda-Fournier H (2016) A pictorial review of changes in the BI-RADS fifth edition. RadioGraphics 36:623–639. https://doi.org/10.1148/rg.2016150178

    Article  PubMed  Google Scholar 

  4. Lee J (2017) Practical and illustrated summary of updated BI-RADS for ultrasonography. Ultrasonography 36:71–81. https://doi.org/10.14366/usg.16034

    Article  PubMed  Google Scholar 

  5. Spak DA, Plaxco JS, Santiago L, Dryden MJ, Dogan BE (2017) BI-RADS ® fifth edition: a summary of changes. Diagn Interv Imaging 98:179–190. https://doi.org/10.1016/j.diii.2017.01.001

    Article  PubMed  CAS  Google Scholar 

  6. Goddi A, Bonardi M, Alessi S (2012) Breast elastography: a literature review. J Ultrasound 15:192–198. https://doi.org/10.1016/j.jus.2012.06.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Drudi F, Giovagnorio F, Carbone A, Ricci P, Petta S, Cantisani V, Ferrari F, Marchetti F, Passariello R (2006) Transrectal colour Doppler contrast sonography in the diagnosis of local recurrence after radical prostatectomy—comparison with MRI. Ultraschall in der Medizin Eur J Ultrasound 28:146–151. https://doi.org/10.1055/s-2006-926583

    Article  Google Scholar 

  8. Cantisani V, Ricci P, Erturk M, Pagliara E, Drudi F, Calliada F, Mortele K, D’Ambrosio U, Marigliano C, Catalano C (2010) Detection of hepatic metastases from colorectal cancer: prospective evaluation of gray scale US versus SonoVue® low mechanical index real-time enhanced US as compared with multidetector-CT or Gd-BOPTA-MRI. Ultraschall in der Medizin-Eur J Ultrasound 31:500–505. https://doi.org/10.1055/s-0028-1109751

    Article  CAS  Google Scholar 

  9. Bamber J, Cosgrove D, Dietrich C, Fromageau J, Bojunga J, Calliada F, Cantisani V, Correas J-M, D’Onofrio M, Drakonaki E, Fink M, Friedrich-Rust M, Gilja O, Havre R, Jenssen C, Klauser A, Ohlinger R, Saftoiu A, Schaefer F, Sporea I, Piscaglia F (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall in der Medizin Eur J Ultrasound 34:169–184. https://doi.org/10.1055/s-0033-1335205

    Article  CAS  Google Scholar 

  10. Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, Castera L, Choi BI, Chou Y-H, Cosgrove D, Dietrich CF, Ding H, Amy D, Farrokh A, Ferraioli G, Filice C, Friedrich-Rust M, Nakashima K, Schafer F, Sporea I, Suzuki S, Wilson S, Kudo M (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol 41:1126–1147. https://doi.org/10.1016/j.ultrasmedbio.2015.03.009

    Article  PubMed  Google Scholar 

  11. Kamble R, Sodhi KS, Thapa BR, Saxena AK, Bhatia A, Dayal D, Khandelwal N (2017) Liver acoustic radiation force impulse (ARFI) in childhood obesity: comparison and correlation with biochemical markers. J Ultrasound 20:33–42. https://doi.org/10.1007/s40477-016-0229-y

    Article  PubMed  Google Scholar 

  12. Giannetti A, Biscontri M, Matergi M, Stumpo M, Minacci C (2016) Feasibility of CEUS and strain elastography in one case of ileum Crohn stricture and literature review. J Ultrasound 19:231–237. https://doi.org/10.1007/s40477-016-0212-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ricci P, Marigliano C, Cantisani V, Porfiri A, Marcantonio A, Lodise P, D’Ambrosio U, Labbadia G, Maggini E, Mancuso E, Panzironi G, Di Segni M, Furlan C, Masciangelo R, Taliani G (2013) Ultrasound evaluation of liver fibrosis: preliminary experience with acoustic structure quantification (ASQ) software. Radiol Med 118:995–1010. https://doi.org/10.1007/s11547-013-0940-0

    Article  PubMed  Google Scholar 

  14. Jalalian A, Mashohor SBT, Mahmud HR, Saripan MIB, Ramli ARB, Karasfi B (2013) Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin Imaging 37:420–426. https://doi.org/10.1016/j.clinimag.2012.09.024

    Article  PubMed  Google Scholar 

  15. Dromain C, Boyer B, Ferré R, Canale S, Delaloge S, Balleyguier C (2013) Computed-aided diagnosis (CAD) in the detection of breast cancer. Eur J Radiol 82:417–423. https://doi.org/10.1016/j.ejrad.2012.03.005

    Article  PubMed  CAS  Google Scholar 

  16. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, Yamakawa M, Matsumura T (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350. https://doi.org/10.1148/radiol.2391041676

    Article  PubMed  Google Scholar 

  17. Jales RM, Sarian LO, Torresan R, Marussi EF, Álvares BR, Derchain S (2013) Simple rules for ultrasonographic subcategorization of BI-RADS®-US 4 breast masses. Eur J Radiol 82:1231–1235. https://doi.org/10.1016/j.ejrad.2013.02.032

    Article  PubMed  Google Scholar 

  18. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  19. **ao X, Jiang Q, Wu H, Guan X, Qin W, Luo B (2017) Diagnosis of sub-centimetre breast lesions: combining BI-RADS-US with strain elastography and contrast-enhanced ultrasound—a preliminary study in China. Eur Radiol 27:2443–2450. https://doi.org/10.1007/s00330-016-4628-4

    Article  PubMed  Google Scholar 

  20. de Fleury FC (2015) The importance of breast elastography added to the BI-RADS® (5th edition) lexicon classification. Revista da Associação Médica Brasileira 61:313–316. https://doi.org/10.1590/1806-9282.61.04.313

    Article  Google Scholar 

  21. Moon WK, Lo C-M, Cho N, Chang JM, Huang C-S, Chen J-H, Chang R-F (2013) Computer-aided diagnosis of breast masses using quantified BI-RADS findings. Comput Methods Programs Biomed 111:84–92. https://doi.org/10.1016/j.cmpb.2013.03.017

    Article  PubMed  Google Scholar 

  22. Shen W-C, Chang R-F, Moon WK (2007) Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS). Ultrasound Med Biol 33:1688–1698. https://doi.org/10.1016/j.ultrasmedbio.2007.05.016

    Article  PubMed  Google Scholar 

  23. Kim K, Song MK, Kim E-K, Yoon JH (2017) Clinical application of S-detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist. Ultrasonography 36:3–9. https://doi.org/10.14366/usg.16012

    Article  PubMed  Google Scholar 

  24. Cho E, Kim E-K, Song MK, Yoon JH (2017) Application of computer-aided diagnosis on breast ultrasonography: evaluation of diagnostic performances and agreement of radiologists according to different levels of experience: application of computer-aided diagnosis on breast ultrasonography. J Ultrasound Med. https://doi.org/10.1002/jum.14332

    Article  PubMed  Google Scholar 

  25. Botticelli A, Mazzotti E, Di Stefano D, Petrocelli V, Mazzuca F, La Torre M, Ciabatta FR, Giovagnoli RM, Marchetti P, Bonifacino A (2015) Positive impact of elastography in breast cancer diagnosis: an institutional experience. J Ultrasound 18:321–327. https://doi.org/10.1007/s40477-015-0177-y

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas J-M, Gilja O, Klauser A, Sporea I, Calliada F, Cantisani V, D’Onofrio M, Drakonaki E, Fink M, Friedrich-Rust M, Fromageau J, Havre R, Jenssen C, Ohlinger R, Săftoiu A, Schaefer F, Dietrich C (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall in der Medizin Eur J Ultrasound 34:238–253. https://doi.org/10.1055/s-0033-1335375

    Article  CAS  Google Scholar 

  27. Barr RG, Nakashima K, Amy D, Cosgrove D, Farrokh A, Schafer F, Bamber JC, Castera L, Choi BI, Chou Y-H, Dietrich CF, Ding H, Ferraioli G, Filice C, Friedrich-Rust M, Hall TJ, Nightingale KR, Palmeri ML, Shiina T, Suzuki S, Sporea I, Wilson S, Kudo M (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 2: breast. Ultrasound Med Biol 41:1148–1160. https://doi.org/10.1016/j.ultrasmedbio.2015.03.008

    Article  PubMed  Google Scholar 

  28. Sadigh G, Carlos RC, Neal CH, Dwamena BA (2012) Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. Breast Cancer Res Treat 134:923–931. https://doi.org/10.1007/s10549-012-2020-x

    Article  PubMed  Google Scholar 

  29. Sadigh G, Carlos RC, Neal CH, Wojcinski S, Dwamena BA (2013) Impact of breast mass size on accuracy of ultrasound elastography vs. conventional B-mode ultrasound: a meta-analysis of individual participants. Eur Radiol 23:1006–1014. https://doi.org/10.1007/s00330-012-2682-0

    Article  PubMed  Google Scholar 

  30. Hao S-Y, Jiang Q-C, Zhong W-J, Zhao X-B, Yao J-Y, Li L-J, Luo B-M, Ou B, Zhi H (2016) Ultrasound elastography combined with BI-RADS–US classification system: is it helpful for the diagnostic performance of conventional ultrasonography? Clin Breast Cancer 16:e33–e41. https://doi.org/10.1016/j.clbc.2015.10.003

    Article  PubMed  Google Scholar 

Download references

Funding

No funding financed this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Di Segni.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

Cantisani V. is lecturer for Bracco and Samsung Healthcare; Bartolotta is lecturer for Samsung Healthcare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Segni, M., de Soccio, V., Cantisani, V. et al. Automated classification of focal breast lesions according to S-detect: validation and role as a clinical and teaching tool. J Ultrasound 21, 105–118 (2018). https://doi.org/10.1007/s40477-018-0297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-018-0297-2

Keywords

Navigation