Log in

Thermal performance analysis of a 1–5 TEMA E shell and coil heat exchanger operating with SWCNT–water nanofluid with varied nanoparticle concentration

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotube–water nanofluids were tested in a 1–5 TEMA E shell and coil heat exchanger. Cold nanofluid, flowing inside the coil, was heated by hot water flowing in the shell side. Volumetric fraction of nanoparticles, inlet temperature of nanofluid, and mass flow rate of nanofluids ranged from 0 to 0.21%, 2.3 to 23.4 °C, and 40 to 90 g/s, respectively. For a given Reynolds number, at the coil side, pure base fluid (φ = 0%) performed better than low-concentration nanofluid samples (φ = 0.035% and 0.053%) and was nearly equivalent to the nanofluid of highest concentration, φ = 0.21%. The thermal conductivity enhancement factor of the nanofluid ranged from 0 to 0.2 and to 0.45, at inlet temperatures of 30 °C and 50 °C, respectively. It is believed to work in favor of a better performance of the nanofluid samples. On the other hand, the unusual (literature-wise) low temperature of the nanofluid further amplified the enhancement of the nanofluid viscosity, with a reduction effect on the Reynolds number. Besides, other thermal resistances of the heat exchanger work toward an attenuation of the enhancement effect that nanoparticles may have in the heat exchanger performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(A\) :

Area (m2)

\(a_{0} ,a_{1} \,\) :

Coefficients of linear adjustment for thermal conductivity enhancement factor (–)

\(B\) :

Coefficient of heat transfer fluid thermal resistance equation (–)

\(\dot{C}\) :

Thermal capacity rate (kW/K)

\(\dot{C}_{\min }\) :

Minimum thermal capacity rate (kW/K)

\(c_{{\text{p}}}\) :

Specific heat at constant pressure (kJ/kg K)

\(D\) :

Coil diameter (m)

\(D_{\text{h}}\) :

Hydraulic diameter (m)

\(f\) :

Fanning friction factor (–)

\(F_{t} \,\) :

Correction factor for heat exchanger temperature difference (–)

\(k\) :

Thermal conductivity (kW/m K)

\(L\) :

Coil total length (m)

\(m\) :

Exponent of heat transfer fluid thermal resistance equation (–)

\(\dot{m}\) :

Mass flow rate (kg/s)

\(\dot{m}_{{{\text{sf}}}}^{{}}\) :

Secondary fluid mass flow rate (kg/s)

\({\text{NTU}}\) :

Number of transfer units (–)

\(P\) :

Pressure (kPa)

\(\dot{Q}\) :

Heat transfer rate (kW)

\(R\) :

Thermal resistance (K/kW)

\(R_{{{\text{nf}}}}\) :

Thermal resistance in the nanofluid side (K/kW)

\(R_{{{\text{UA}}}}\) :

Thermal resistance due to the heat exchanger conductance (K/kW)

\({\text{Re}}\) :

Reynolds number (–)

\(T\) :

Temperature (°C)

\(T_{{{\text{sf}}\_{\text{cold}}}}\) :

Temperature of the cold side of the secondary fluid circuit (°C)

\(T_{{{\text{sf}}\_{\text{hot}}}}\) :

Temperature of the hot side of the secondary fluid circuit (°C)

\(T_{{{\text{sf}}\_{\text{in}}}}\) :

Temperature of secondary fluid entering the evaporator (°C)

\(T_{{{\text{sf}}\_{\text{out}}}}\) :

Temperature of the secondary fluid leaving the evaporator (°C)

\(T_{{{\text{w}}\_{\text{in}}}}\) :

Water inlet temperature (°C)

\(T_{{{\text{w}}\_{\text{out}}}}\) :

Water outlet temperature (°C)

\(T_{{{1} }}\) :

Compressor refrigerant inlet temperature (°C)

\(T_{3}\) :

Condenser refrigerant outlet temperature (°C)

\(U\) :

Overall heat transfer coefficient (kW/m2 K)

\({\text{UA}}\) :

Heat exchanger overall conductance (kW/K)

\({\text{wt}}\) :

Mass fraction of nanoparticles (%)

\(x_{n}\) :

Generic measured parameter of Eq. (18)

EEV:

Electronic expansion valve

HCT:

Helically coiled tube heat exchanger

LMTD:

Logarithmic mean temperature difference

MWCNT:

Multi-walled carbon nanotube

SCHX:

Shell and coil heat exchanger

SMWCNT:

Single-walled carbon nanotube

TEMA:

Tubular exchanger manufacturers association

\(\alpha\) :

Heat transfer coefficient (kW/m2 K)

\(\Delta T_{a}\) :

Temperature difference between fluids at side a of the heat exchanger (K)

\(\Delta T_{b}\) :

Temperature difference between fluids at side b of the heat exchanger (K)

\(\overline{\Delta T}_{\ln }\) :

Logarithmic mean temperature difference (K)

\(\varepsilon\) :

Heat exchanger effectiveness (–)

\(\mu\) :

Dynamic viscosity (kg/m s)

\(\rho\) :

Density (kg/m3)

\(\varphi\) :

Volumetric fraction of nanoparticle (%)

\(\eta_{\text{p}}\) :

Pump efficiency (–)

\(\xi_{k}\) :

Nanofluid thermal conductivity enhancement factor (–)

\(\xi_{\mu }\) :

Nanofluid dynamic viscosity enhancement factor (–)

a, b:

Physical sides of the heat exchanger

bf:

Base fluid

HTF:

Heat transfer fluid

i:

Inner

in:

Inlet

k:

Thermal conductivity

K:

In Kelvin (for temperatures)

loss:

Relative to heat loss across the heat exchanger shell

min:

Minimum

nf:

Nanofluid

np:

Nanotube

o:

Outer

out:

Outlet

t:

t

w:

Water

wt:

Water

µ :

Viscosity

References

  1. Cheng L, Bandarra Filho EP, Thome JR (2008) Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges. J Nanosci Nanotechnol 8(7):3315–3332. https://doi.org/10.1166/jnn.2008.413

    Article  Google Scholar 

  2. Saidur R, Leong KY, Mohammad HA (2011) A review on applications and challenges of nanofluids. Renew Sustain Energy Rev 15:1646–1668. https://doi.org/10.1016/j.rser.2010.11.035

    Article  Google Scholar 

  3. Choi SUS (1995) Developments and applications of non-Newtonian flows. ASME FED 231(66):99–103

    Google Scholar 

  4. Sidik NAC, Mohammed HA, Alawi OA, Samion S (2014) A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transf 54:115–125. https://doi.org/10.1016/j.icheatmasstransfer.2014.03.002

    Article  Google Scholar 

  5. Angayarkanni SA, Philip J (2015) Review on thermal properties of nanofluids: recent developments. Adv Colloid Interface Sci 225:146–176. https://doi.org/10.1016/j.cis.2015.08.0140001-8686

    Article  Google Scholar 

  6. Vatani A, Woodfield PL, Dao DV (2015) A survey of practical equations for prediction of effective thermal conductivity of spherical–particle nanofluids. J Mol Liq 211:712–733. https://doi.org/10.1016/j.molliq.2015.07.043

    Article  Google Scholar 

  7. Mishra PC, Mukherjee S, Nayak SK, Panda A (2014) A brief review on viscosity of nanofluids. Int Nano Lett 4:109–120. https://doi.org/10.1007/s40089-014-0126-3

    Article  Google Scholar 

  8. Shahrul IM, Mahbubul IM, Khaleduzzaman SS, Saidur RR, Sabri MFM (2014) A comparative review on the specific heat of nanofluids for energy perspective. Renew Sustain Energy Rev 38:88–98. https://doi.org/10.1016/j.rser.2014.05.081

    Article  Google Scholar 

  9. Solangi KH, Kazi SN, Luhur MR, Badarudin A, Amiri A, Sadri R, Zubir MNM, Gharehkhani S, Teng KH (2015) A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy 89:1065–1086. https://doi.org/10.1016/j.energy.2015.06.105

    Article  Google Scholar 

  10. Gupta M et al (2017) A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev 74:638–670. https://doi.org/10.1016/j.rser.2017.02.073

    Article  Google Scholar 

  11. Paul G, Pal T, Manna I (2010) Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique. J Colloid Interface Sci 349(1):434–437. https://doi.org/10.1016/j.jcis.2010.05.086

    Article  Google Scholar 

  12. Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30(14):2213–2218. https://doi.org/10.1016/j.applthermaleng.2010.05.036

    Article  Google Scholar 

  13. **e H, Wang J, ** T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91(7):4568–72. https://doi.org/10.1063/1.1454184

    Article  Google Scholar 

  14. Li XF, Zhu DS, Wang XJ, Wang N, Gao JW, Li H (2008) Thermal conductivity enhancement dependent pH and chemical surfactant for Cu–H2O nanofluids. Thermochim Acta 469(1):98–103. https://doi.org/10.1016/j.tca.2008.01.008

    Article  Google Scholar 

  15. Zhu D, Li X, Wang N, Wang X, Gao J, Li H (2009) Dispersion behaviour and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys 9(1):131–139. https://doi.org/10.1016/j.cap.2007.12.008

    Article  Google Scholar 

  16. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863. https://doi.org/10.1016/S0017-9310(01)00175-2

    Article  MATH  Google Scholar 

  17. Hong KS, Hong TK, Yang HS (2006) Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 88(3):031901. https://doi.org/10.1063/1.2166199

    Article  Google Scholar 

  18. Verma SK, Tiwari AK (2015) Progress of nanofluid application in solar collectors: a review. Energy Convers Manag 100:324–346. https://doi.org/10.1016/j.enconman.2015.04.071

    Article  Google Scholar 

  19. Islam MR, Shabani B, Rosengarten G, Andrews J (2015) The potential of using nanofluids in PEM fuel cell cooling systems: a review. Renew Sustain Energy Rev 48:523–539. https://doi.org/10.1016/j.rser.2015.04.018

    Article  Google Scholar 

  20. Sidik NAC, Yazid MNAWM, Mamat R (2015) A review on the application of nanofluids in vehicle engine cooling system. Int Commun Heat Mass Transf 68:85–90. https://doi.org/10.1016/j.icheatmasstransfer.2015.08.017

    Article  Google Scholar 

  21. Hussein AM, Sharma KV, Bakar RA, Kadirgama K (2014) A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid. Renew Sustain Energy Rev 29:734–743. https://doi.org/10.1016/j.rser.2013.08.014

    Article  Google Scholar 

  22. Pandya NS, Shah H, Molana M, Tiwari AK (2020) Heat transfer enhancement with nanofluids in plate heat exchangers: a comprehensive review. Eur J Mech B/Fluids 81:173–190. https://doi.org/10.1016/j.euromechflu.2020.02.004

    Article  MATH  Google Scholar 

  23. Kumar H, Sokhal GS (2020) Effect of geometries and nanofluids on heat transfer and pressure drop in microchannels: a review. Mater Today Proc 28(part 3):1841–1846

    Google Scholar 

  24. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47(24):5181–5518. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

    Article  Google Scholar 

  25. Sozen A, Variyenli HI, Ozdemir MB, Gürü M (2016) Improving the thermal performance of parallel and cross-flow concentric tube heat exchangers using fly-ash nanofluid. Heat Transf Eng 37:805–813. https://doi.org/10.1080/01457632.2015.1080574

    Article  Google Scholar 

  26. Shahrul IM, Mahbubul IM, Saidur R, Sabri MFM (2016) Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger. Int J Heat Mass Transf 97:547–558. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.016

    Article  Google Scholar 

  27. Elshazly KM, Sakr RY, Ali RK, Salem MR (2017) Effect of γ-Al2O3/water nanofluid on the thermal performance of shell and coil heat exchanger with different coil torsions. Heat Mass Transf 53:1893–1903. https://doi.org/10.1007/s00231-016-1949-4

    Article  Google Scholar 

  28. Shahrul IM, Mahbubul IM, Saidur R, Khaleduzzaman SS, Sabri MFM (2016) Performance evaluation of a shell and tube heat exchanger operated with oxide based nanofluids. Heat Mass Transf 52:1425–1433. https://doi.org/10.1007/s00231-015-1664-6

    Article  Google Scholar 

  29. Barzegarian R, Aloueyan A, Yousefi T (2017) Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation. Int Commun Heat Mass Transf 86:52–59. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.021

    Article  Google Scholar 

  30. Farajollahi B, Etemad SG, Hojjat M (2010) Heat transfer of nanofluids in a shell and tube heat exchanger. Int J Heat Mass Transf 53:12–17. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.019

    Article  MATH  Google Scholar 

  31. Leong KY, Saidur R, Mahlia TMI, Yau YH (2012) Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants. Int J Heat Mass Transf 55:808–816. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.027

    Article  Google Scholar 

  32. Raja M, Arunachalam RM, Suresh S (2012) Experimental studies on heat transfer of alumina/water nanofluid in a shell and tube heat exchanger with wire coil insert. Int J Mech Mater Eng 7:16–23

    Google Scholar 

  33. Akhtari M, Haghshenasfard M, Talaie MR (2013) Numerical and experimental investigation of heat transfer of γ-Al2O3/water nanofluid in double pipe and shell and tube heat exchangers. J Numer Heat Transf A 63:941–958. https://doi.org/10.1080/10407782.2013.772855

    Article  Google Scholar 

  34. Elias MM, Miqdad M, Mahbubul IM, Saidur R, Kamalisarvestani M, Sohel MR, Hepbasli A, Rahim NA, Amalina MA (2013) Effect of nanoparticle shape on the heat transfer and thermo-dynamic performance of a shell and tube heat exchanger. Int Commun Heat Mass Transf 44:93–99. https://doi.org/10.1016/j.icheatmasstransfer.2013.03.014

    Article  Google Scholar 

  35. Godson L, Deepak K, Enoch C, Jefferson B, Raja B (2014) Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Arch Civ Mech Eng 14:489–496. https://doi.org/10.1016/j.acme.2013.08.002

    Article  Google Scholar 

  36. Dharmalingam R, Sivagnanaprabhu KK, Yogaraja J, Gunasekaran S, Mohan R (2015) Experimental investigation of heat transfer characteristics of nanofluid using parallel flow, counter flow and shell and tube heat exchanger. Arch Mech Eng LXII:509–522. https://doi.org/10.1515/meceng-2015-0028

    Article  Google Scholar 

  37. Aghabozorg MH, Rashidi A, Mohammadi S (2016) Experimental investigation of heat transfer enhancement of Fe2O3–CNT/water magnetic nanofluids under laminar, transient and turbulent flow inside a horizontal shell and tube heat exchanger. Exp Therm Fluid Sci 72:182–189. https://doi.org/10.1016/j.expthermflusci.2015.11.011

    Article  Google Scholar 

  38. Kumar N, Sonawane SS (2016) Experimental study of Fe2O3/water and Fe2O3/ethylene glycol nanofluid heat transfer enhancement in a shell and tube heat exchanger. Int Commun Heat Mass Transf 78:277–284. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.009

    Article  Google Scholar 

  39. Hosseini SM, Vafajoo L, Salman BH (2016) Performance of CNT–water nanofluid as coolant fluid in shell and tube intercooler of a LPG absorber tower. Int J Heat Mass Transf 102:45–53. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.071

    Article  Google Scholar 

  40. Nallusamy S, Prabu NM (2017) Heat transfer enhancement analysis of Al2O3–water nanofluid through parallel and counter flow in shell and tube heat exchangers. Int J Nanosci 16:1750020. https://doi.org/10.1142/S0219581X1750020X

    Article  Google Scholar 

  41. Haque AKMM, Kim S, Kim J, Noh J, Huh S, Choi B, Chung H, Jeong H (2018) Forced convective heat transfer of aqueous Al2O3 nanofluid through shell and tube heat exchanger. J Nanosci Nanotechnol 18(3):1730–1740. https://doi.org/10.1166/jnn.2018.14216

    Article  Google Scholar 

  42. Said Z, Rahman SMA, Assad MEH, Alami AH (2019) Heat transfer enhancement and life cycle analysis of a shell-and-tube heat exchanger using stable CuO/water nanofluid. Sustain Energy Technol Assess 31:306–317. https://doi.org/10.1016/j.seta.2018.12.020

    Article  Google Scholar 

  43. Albadr J, Tayal S, Alasadi M (2013) Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud Therm Eng 1:38–44. https://doi.org/10.1016/j.csite.2013.08.004

    Article  Google Scholar 

  44. Anoop K, Cox J, Sadr R (2013) Thermal evaluation of nanofluids in heat exchangers. Int Commun Heat Mass Transf 49:5–9. https://doi.org/10.1016/j.icheatmasstransfer.2013.10.002

    Article  Google Scholar 

  45. Singh SK, Sarkar J (2020) Improvement in energy performance of tubular heat exchangers using nanofluids: a review. Curr Nanosci 16(2):136–156. https://doi.org/10.2174/1573413715666190715101044

    Article  Google Scholar 

  46. Sonawane SS, Khedkar RS, Wasewar KL (2013) Study on concentric tube heat exchanger heat transfer performance using Al2O3–water based nanofluids. Int Commun Heat Mass Transf 49:60–68. https://doi.org/10.1016/j.icheatmasstransfer.2013.10.001

    Article  Google Scholar 

  47. El-Maghlany WM, Hanafy AA, Hassan AA, El-Magid MA (2016) Experimental study of Cu–water nanofluid heat transfer and pressure drop in a horizontal double-tube heat exchanger. Exp Therm Fluid Sci 78:100–111. https://doi.org/10.1016/j.expthermflusci.2016.05.015

    Article  Google Scholar 

  48. Sozen A, Variyenli HI, Ozdemir MB, Gürü M, Aytaç I (2016) Heat transfer enhancement using alumina and fly ash nanofluids in parallel and cross-flow concentric tube heat exchangers. J Eng Inst 89:414–424. https://doi.org/10.1016/j.joei.2015.02.012

    Article  Google Scholar 

  49. Maddhah H, Aghayari R, Mirzaee M, Ahmadi MH, Sadeghzadeh M, Chamkha AJ (2018) Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3–TiO2 hybrid nanofluid. Int Commun Heat Mass Transf 97:92–102. https://doi.org/10.1016/j.icheatmasstransfer.2018.07.002

    Article  Google Scholar 

  50. Kumar NTR, Bhramara P, Addis BM, Sundar LS, Singh MK, Sousa ACM (2017) Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend. Int Commun Heat Mass Transf 81:155–163. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.019

    Article  Google Scholar 

  51. Qi C, Luo T, Liu M, Fan F, Yan Y (2019) Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Convers Manag 197:111877. https://doi.org/10.1016/j.enconman.2019.111877

    Article  Google Scholar 

  52. Singh SK, Sarkar J (2020) Improving hydrothermal performance of double-tube heat exchanger with modified twisted tape inserts using hybrid nanofluid. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09380-w

    Article  Google Scholar 

  53. Chun BH, Kang HU, Kim SH (2008) Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system. Korean J Chem Eng 25:966–971. https://doi.org/10.1007/s11814-008-0156-5

    Article  Google Scholar 

  54. Huminic G, Huminic A (2011) Heat transfer characteristics in double tube helical heat exchangers using nanofluids. Int J Heat Mass Transf 54:4280–4287. https://doi.org/10.1016/j.ijheatmasstransfer.2011.05.017

    Article  MATH  Google Scholar 

  55. Zamzamian A, Oskouie SN, Doosthoseini A, Joneidi A, Pazouki M (2011) Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Exp Therm Fluid Sci 35:495–502. https://doi.org/10.1016/j.expthermflusci.2010.11.013

    Article  Google Scholar 

  56. Wu Z, Wang L, Sundén B (2013) Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger. Appl Therm Eng 60:266–274. https://doi.org/10.1016/j.applthermaleng.2013.06.051

    Article  Google Scholar 

  57. Darzi AAR, Farhadi M, Sedighi K (2013) Heat transfer and flow characteristics of Al2O3–water nanofluid in a double tube heat exchanger. Int Commun Heat Mass Transf 47:105–112. https://doi.org/10.1016/j.icheatmasstransfer.2013.06.003

    Article  Google Scholar 

  58. Mohammed HA, Hasan HA, Wahid MA (2013) Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip insert. Int Commun Heat Mass Transf 40:36–46. https://doi.org/10.1016/j.icheatmasstransfer.2012.10.023

    Article  Google Scholar 

  59. Maddah H, Alizadeh M, Ghasemi N, Alwi SRW (2014) Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int J Heat Mass Transf 78:1042–1054. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.059

    Article  Google Scholar 

  60. Rao VV, Reddy MC (2014) Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts. Int Commun Heat Mass Transf 50:68–76. https://doi.org/10.1016/j.icheatmasstransfer.2013.11.002

    Article  Google Scholar 

  61. Sarafraz MM, Hormozi F (2015) Intensification of forced convection heat transfer using biological nanofluid in a double-pipe heat exchanger. Exp Therm Fluid Sci 66:279–289. https://doi.org/10.1016/j.expthermflusci.2015.03.028

    Article  Google Scholar 

  62. Jafarimoghaddam A, Aberoumand S, Aberoumand H, Javaherdeh K (2017) Experimental study on Cu/oil nanofluids through concentric annular tube: a correlation. Heat Trans Asian Res 46:251–260. https://doi.org/10.1002/htj.21210

    Article  Google Scholar 

  63. Kumar NTR, Bhramara P, Sundar LS, Singh MK, Sousa ACM (2017) Heat transfer, friction factor and effectiveness of Fe3O4 nanofluid flow in an inner tube of double pipe U-bend heat exchanger with and without longitudinal strip inserts. Exp Therm Fluid Sci 85:331–343. https://doi.org/10.1016/j.expthermflusci.2017.03.019

    Article  Google Scholar 

  64. Hussein AM (2017) Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger. Exp Therm Fluid Sci 88:37–45. https://doi.org/10.1016/j.expthermflusci.2017.05.015

    Article  Google Scholar 

  65. Akyurek EF, Gelis K, Sahin B, Manay E (2018) Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger. Results Phys 9:376–389. https://doi.org/10.1016/j.rinp.2018.02.067

    Article  Google Scholar 

  66. Bahiraei M, Jamshidmofid M, Heshmatian S (2017) Entropy generation in a heat exchanger working with a biological nanofluid considering heterogeneous particle distribution. Adv Powder Technol 28:2380–2392. https://doi.org/10.1016/j.apt.2017.06.021

    Article  Google Scholar 

  67. Fakoor-Pakdaman M, Akhavan-Behabadi MA, Razi P (2013) An empirical study on the pressure drop characteristics of nanofluid flow inside helically coiled tubes. Int J Therm Sci 65:206–213. https://doi.org/10.1016/j.ijthermalsci.2012.10.014

    Article  Google Scholar 

  68. Kumar PCM, Kumar J, Tamilarasan R, Nathan SS, Suresh S (2014) Heat transfer enhancement and pressure drop analysis in a helically coiled tube using Al2O3/water nanofluid. J Mech Sci Technol 28:1841–1847. https://doi.org/10.1007/s12206-014-0331-z

    Article  Google Scholar 

  69. Salem MR, Ali RK, Sakr RY, Elshazly KM (2015) Effect of γ-Al2O3/water nanofluid on heat transfer and pressure drop characteristics of shell and coil heat exchanger with different coil curvatures. J Therm Sci Eng Appl 7:1–9. https://doi.org/10.1115/1.4030635

    Article  Google Scholar 

  70. Srinivas T, Vinod AV (2016) Heat transfer intensification in a shell and helical coil heat exchanger using water-based nanofluids. Chem Eng Process 102:1–8. https://doi.org/10.1016/j.cep.2016.01.005

    Article  Google Scholar 

  71. Naik BAK, Vinod AV (2018) Heat transfer enhancement using non-Newtonian nanofluids in a shell and helical coil heat exchanger. Exp Therm Fluid Sci 90:132–142. https://doi.org/10.1016/j.expthermflusci.2017.09.013

    Article  Google Scholar 

  72. Sarafraz MM, Hormozi F, Nikkhah V (2016) Thermal performance of a counter-current double pipe heat exchanger working with COOH–CNT/water nanofluids. Exp Therm Fluid Sci 78:41–49. https://doi.org/10.1016/j.expthermflusci.2016.05.014

    Article  Google Scholar 

  73. Goodarzi M, Kherbeet AS, Afrand M, Sadeghinezhad E, Mehrali M, Zahedi P, Wongwises S, Dahari M (2016) Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int Commun Heat Mass Transf 76:16–23. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.018

    Article  Google Scholar 

  74. Hosseinian A, Isfahani AHM, Shiran E (2018) Experimental investigation of surface vibration effects on increasing the stability and heat transfer coefficient of MWCNTs–water nanofluid in a flexible double pipe heat exchanger. Exp Therm Fluid Sci 90:275–285. https://doi.org/10.1016/j.expthermflusci.2017.09.018

    Article  Google Scholar 

  75. Kumaresan V, Velraj R, Das SK (2012) Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. Int J Refrig 35:2287–2296. https://doi.org/10.1016/j.ijrefrig.2012.08.009

    Article  Google Scholar 

  76. Lotfi R, Rashidi AM, Amrollahi A (2012) Experimental study on the heat transfer enhancement of MWNT–water nanofluid in a shell and tube heat exchanger. Int Commun Heat Mass Transf 39(1):108–111. https://doi.org/10.1016/j.icheatmasstransfer.2011.10.002

    Article  Google Scholar 

  77. Esfahani MR, Languri EM (2017) Exergy analysis of a shell-and-tube heat exchanger using graphene oxide nanofluids. Exp Therm Fluid Sci 83:100–106. https://doi.org/10.1016/j.expthermflusci.2016.12.004

    Article  Google Scholar 

  78. Fares M, Mohammad AL-M, Mohammed AL-S (2020) Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids. Case Stud Therm Eng 18:100584. https://doi.org/10.1016/j.csite.2020.100584

    Article  Google Scholar 

  79. Lotfi R, Rashidi AM, Amrollahi A (2012) Experimental study on the heat transfer enhancement of MWNT–water nanofluid in a shell and tube heat exchanger. Int Commun Heat Mass Transf 39:108–111. https://doi.org/10.1016/j.icheatmasstransfer.2011.10.002

    Article  Google Scholar 

  80. Ghozatloo A, Rashidi A, Niassar MS (2014) Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger. Exp Therm Fluid Sci 53:136–141. https://doi.org/10.1016/j.expthermflusci.2013.11.018

    Article  Google Scholar 

  81. Raveendran PS, Sekhar SJ (2019) Investigation on the energy and exergy efficiencies of a domestic refrigerator retrofitted with water-cooled condensers of shell-and-coil and brazed-plate heat exchangers. J Therm Anal Calorim 136(1):381–388. https://doi.org/10.1007/s10973-018-7742-5

    Article  Google Scholar 

  82. Said Z (2016) Thermophysical and optical properties of SWCNTs nanofluids. Int Commun Heat Mass Transf 78:207–213

    Article  Google Scholar 

  83. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  84. Choi S, Zhang Z, Yu W, Lockwood F, Grulke E (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252–2254

    Article  Google Scholar 

  85. Gómez AOC, Alegrias JGP, Bandarra Filho EP (2017) Experimental analysis of the thermal-hydraulic performance of water based silver and SWCNT nanofluids in single-phase flow. Appl Therm Eng 124:1176–1188. https://doi.org/10.1016/j.applthermaleng.2017.06.090

    Article  Google Scholar 

  86. Vasconcelos AA, Gómez AOC, Bandarra Filho EP, Parise JAR (2017) Experimental evaluation of SWCNT–water nanofluid as a secondary fluid in a refrigeration system. Appl Therm Eng 111:1487–1492. https://doi.org/10.1016/j.applthermaleng.2016.06.126

    Article  Google Scholar 

  87. Kern DK (1950) Process heat transfer. McGraw-Hill Kogakusha Ltd., Tokyo

    Google Scholar 

  88. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8

    Google Scholar 

  89. Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett 87(161909):1–3. https://doi.org/10.1063/1.2103398

    Article  Google Scholar 

  90. **ng M, Yu J, Wang R (2015) Thermo-physical properties of water-based single-walled carbon nanotube nanofluid as advanced coolant. Appl Therm Eng 87:344–351. https://doi.org/10.1016/j.applthermaleng.2015.05.033

    Article  Google Scholar 

  91. Sabiha MA, Saidur R, Hassani S, Said Z, Mekhilef S (2015) Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Convers Manag 105:1377–1388. https://doi.org/10.1016/j.enconman.2015.09.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to CNPq, CAPES, FAPERJ, and FAPEMIG for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alberto Reis Parise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been selected for a Topical Issue of this journal on Nanoparticles and Passive-Enhancement Methods in Energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sica, L.U.R., Vasconcelos, A.A., Parise, J.A.R. et al. Thermal performance analysis of a 1–5 TEMA E shell and coil heat exchanger operating with SWCNT–water nanofluid with varied nanoparticle concentration. J Braz. Soc. Mech. Sci. Eng. 43, 122 (2021). https://doi.org/10.1007/s40430-021-02833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02833-9

Keywords

Navigation