Log in

Electroosmotic flow of pseudoplastic nanoliquids via peristaltic pum**

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The study of electroosmotic flow of biorheological fluids has been employed in the advancement of diversified biomicrofluidics systems. To explore more in this field, a mathematical model is developed to investigate the electroosmotic flow of pseudoplastic aqueous nanoliquids in microchannel. A tangent hyperbolic fluid model is employed to describe the rheological behavior of the pseudoplastic fluid. Here, analytical solutions for potential distribution, temperature and nanoparticle fraction are derived and perturbation solution for stream function, pressure gradient and volumetric flow rate are obtained. The convective boundary condition is applied on the channel walls. The authentic assumptions of Debye–Hückel linearization, long wavelength and small Reynold’s number are employed in the dimensional conservative equations. The influences of various emerging parameters are graphically computed for axial velocity, pressure gradient, thermal temperature, nanoparticle volume fraction, skin friction coefficient and Nusselt profiles. To observe the thermal radiation effects, a thermal radiative flux model is also deployed. It is noticed that the heat transfer Biot number increases with increasing thermal temperature; however, a reversed behavior is reported for the nanoparticle volume fraction. Therefore, the present model does not only provide a deep theoretical insight to interpret the electroosmotic flow systems, but it will also be applicable in designing the emerging tool for biomicrofluidic devices/systems under peristalsis mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Ahmed B, Javed T, Hamid AH, Sajid M (2017) Numerical analysis of mixed convective peristaltic flow in a vertical channel in presence of heat generation without using lubrication theory. J Appl Fluid Mech 6(10):1813–1827

    Google Scholar 

  2. Ahmed B, Javed T, Ali N (2018) Numerical study at moderate Reynolds number of peristaltic flow of micropolar fluid through a porous-saturated channel in magnetic field. AIP Adv 8(1):015319

    Article  Google Scholar 

  3. Ahmed B, Javed T, Sajid M (2018) Peristaltic transport of blood in terms of Casson fluid model through a tube under impact of magnetic field for moderate Reynolds number. J Qual Meas Anal 14(1):101–113

    Google Scholar 

  4. Latham TW (1966) Fluid motion in a peristaltic pump. Master’s thesis, MIT, Cambridge

  5. Sreenadh S, Srinivas ANS, Selvi CK (2016) Analytical solution for peristaltic flow of conducting nanofluids in an asymmetric channel with slip effect of velocity, temperature and concentration. Alex Eng J 55(2):1085–1098

    Article  Google Scholar 

  6. Ebaid A, Aly EH, Vajravelu K (2017) Analytical solution for peristaltic transport of viscous nanofluid in an asymmetric channel with full slip and convective conditions. Commun Theor Phys 68(1):96

    Article  MathSciNet  Google Scholar 

  7. Javed T, Ahmed B, Sajid M (2018) Numerical study of mixed convective peristaltic flow through vertical tube with heat generation for moderate Reynolds and wave numbers. Commun Theor Phys 69(4):449

    Article  Google Scholar 

  8. Auer J, Krueger H (1947) Experimental study of antiperistaltic and peristaltic motor and inhibitory phenomena. Am J Physiol Leg Content 148(2):350–357 PMID: 20284555

    Article  Google Scholar 

  9. Weinberg SL, Eckstein EC, Shapiro AH (1971) An experimental study of peristaltic pum**. J Fluid Mech 49(3):461–479

    Article  Google Scholar 

  10. Na S, Ridgeway S, Cao L (2003) Theoretical and experimental study of fluid behavior of a peristaltic micropump. In: Proceedings of the 15th Biennial University/government/industry microelectronics symposium. Cat. No. 03CH37488, pp 312–316

  11. Bandopadhyay A, Tripathi D, Chakraborty S (2016) Electroosmosis-modulated peristaltic transport in microfluidic channels. Phys Fluids 28(5):052002

    Article  Google Scholar 

  12. Tripathi D, Jhorar R, Bég OA, Kadir A (2017) Electro-magneto-hydrodynamic peristaltic pum** of couple stress biofluids through a complex wavy micro-channel. J Mol Liq 236:358–367

    Article  Google Scholar 

  13. Ranjit NK, Shit GC (2017) Entropy generation on electro-osmotic flow pum** by a uniform peristaltic wave under magnetic environment. Energy 128:649–660

    Article  Google Scholar 

  14. Ranjit NK, Shit GC, Sin ha A (2017) Transportation of ionic liquids in a porous micro-channel induced by peristaltic wave with Joule heating and wall-slip conditions. Chem Eng Sci 171:545–557

    Article  Google Scholar 

  15. Tripathi D, Jhorar R, Bég OA, Shaw S (2018) Electroosmosis modulated peristaltic biorheological flow through an asymmetric microchannel: mathematical model. Meccanica 53(8):2079–2090

    Article  MathSciNet  Google Scholar 

  16. Tripathi D, Borode A, Jhorar R, Bég OA, Tiwari AK (2017) Computer modelling of electro-osmotically augmented three-layered microvascular peristaltic blood flow. Microvasc Res 114:65–83

    Article  Google Scholar 

  17. Prakash J, Tripathi D (2018) Electroosmotic flow of Williamson ionic nanoliquids in a tapered microfluidic channel in presence of thermal radiation and peristalsis. J Mol Liq 256:352–371

    Article  Google Scholar 

  18. Prakash J, Sharma A, Tripathi D (2018) Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J Mol Liq 249:843–855

    Article  Google Scholar 

  19. Khan MI, Qayyum S, Hayat T, Khan MI, Alsaedi A, Khan TA (2018) Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection. Phys Lett A 382(31):2017–2026

    Article  MathSciNet  Google Scholar 

  20. Khan M, Hussain A, Malik MY, Salahuddin T, Khan F (2017) Boundary layer flow of MHD tangent hyperbolic nanofluid over a stretching sheet: a numerical investigation. Results Phys 7:2837–2844

    Article  Google Scholar 

  21. Martin Ndi Azese (2016) On the generalization of velocity slip in fluid flows using a steady-state series expansion of the wall shear stress: case of simple Newtonian fluids. Eur J Mech B Fluids 57:204–213

    Article  MathSciNet  Google Scholar 

  22. Tripathi D (2012) Peristaltic hemodynamic flow of couple-stress fluids through a porous medium with slip effect. Transp Porous Media 92(3):559–572

    Article  MathSciNet  Google Scholar 

  23. Azese MN (2018) Measurement and characterization of slippage and slip-law using a rigorous analysis in dynamics of oscillating rheometer: Newtonian fluid. Phys Fluids 30(2):023103

    Article  Google Scholar 

  24. Srivastava VP, Saxena M (1995) A two-fluid model of non-Newtonian blood flow induced by peristaltic waves. Rheol Acta 34(4):406–414

    Article  Google Scholar 

  25. Tripathi D, Bég OA (2012) A numerical study of oscillating peristaltic flow of generalized Maxwell viscoelastic fluids through a porous medium. Transp Porous Media 95(2):337–348

    Article  MathSciNet  Google Scholar 

  26. Tripathi D (2011) Numerical study on cree** flow of burgers’ fluids through a peristaltic tube. J Fluids Eng 133(12):121104

    Article  Google Scholar 

  27. Tripathi D (2011) Numerical study on peristaltic flow of generalized burgers’ fluids in uniform tubes in the presence of an endoscope. Int J Numer Methods Biomed Eng 27(11):1812–1828

    Article  MathSciNet  Google Scholar 

  28. Saidulu N, Lakshmi AV (2018) The effects of thermal radiation and inclined magnetic force on tangent hyperbolic fluid flow with zero normal flux of nanoparticles at the exponential stretching sheet. J Nanofluids 7(5):809–820

    Article  Google Scholar 

  29. Hayat T, Shafique M, Tanveer A, Alsaedi A (2016) Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and joule heating in an inclined channel. Int J Heat Mass Transf 102:54–63

    Article  Google Scholar 

  30. Hayat T, Shafique M, Tanveer A, Alsaedi A (2017) Slip and joule heating effects on radiative peristaltic flow of hyperbolic tangent nanofluid. Int J Heat Mass Transf 112:559–567

    Article  Google Scholar 

  31. Hayat T, Ayub S, Tanveer A, Alsaedi A (2018) Slip and joule heating effects on peristaltic transport in an inclined channel. J Therm Sci Eng Appl 10(3):031004

    Article  Google Scholar 

  32. Zhou Y, **e Y, Yang C, Lam YC (2015) Thermal effect on microchannel electro-osmotic flow with consideration of thermodiffusion. J Heat Transfer 137(9):091023

    Article  Google Scholar 

  33. Shit GC, Mondal A, Sin ha A, Kundu PK (2016) Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of joule heating and thermal radiation. Phys A 462:1040–1057

    Article  MathSciNet  Google Scholar 

  34. Akbar NS, Huda AB, Habib MB, Tripathi D (2018) Nanoparticles shape effects on peristaltic transport of nanofluids in presence of magnetohydrodynamics. Microsyst Technol. https://doi.org/10.1007/s00542-018-3963-6

    Article  Google Scholar 

  35. Ko C-H, Li D, Malekanfard A, Wang Y-N, Fu L-M, Xuan X (2018) Fluid rheological effects on electroosmotic flow in a constriction microchannel. Bulletin of the American Physical Society.   In: 71st Annual Meeting of the APS division of fluid dynamics Sunday–Tuesday, November 18–20, 2018. Atlanta, Georgia. https://meetings.aps.org/Meeting/DFD18/Session/KP1.128. ​Accessed 21 Nov 2018

  36. Mortazavi S (2017) Computational analysis of the flow of pseudoplastic power-law fluids in a microchannel plate. Chin J Chem Eng 25(10):1360–1368

    Article  Google Scholar 

  37. Khan M, Malik MY, Salahuddin T (2017) Heat generation and solar radiation effects on Carreau nanofluid over a stretching sheet with variable thickness: using coefficients improved by Cash and Carp. Results Phys 7:2512–2519

    Article  Google Scholar 

  38. Khan M, Shahid A, Malik MY, Salahuddin T (2018) Chemical reaction for Carreau–Yasuda nanofluid flow past a nonlinear stretching sheet considering Joule heating. Results Phys 8:1124–1130

    Article  Google Scholar 

  39. Salahuddin T, Khan I, Malik MY, Khan M, Hussain A, Awais M (2017) Internal friction between fluid particles of MHD tangent hyperbolic fluid with heat generation: using coefficients improved by Cash and Karp. Eur Phys J Plus 132:205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Tripathi.

Additional information

Technical Editor: Cezar Negrao, PhD.

Appendix

Appendix

The following constants are utilized in the solution parts.

$$\gamma_{1} = \frac{{ - a_{2} + \sqrt {a_{2}^{2} - 4a_{3} } }}{2},\gamma_{2} = \frac{{ - a_{2} - \sqrt {a_{2}^{2} - 4a_{3} } }}{2},$$
$$A = \frac{{\cosh \left( {h\kappa } \right) + \sinh \left( {h\kappa } \right)}}{{2\sinh \left( {2h\kappa } \right)}},B = - \frac{{\cosh \left( {h\kappa } \right) - \sinh \left( {h\kappa } \right)}}{{2\sinh \left( {2h\kappa } \right)}},$$
$$C = \frac{{\left( {Bh - D\left( {Bh + \gamma_{2} } \right)\left( {\cosh (h\gamma_{2} ) + \sinh (h\gamma_{2} )} \right)} \right)\left( {\cosh (h\gamma_{1} ) - \sinh (h\gamma_{1} )} \right)}}{{Bh + \gamma_{1} }},$$
$$D = \frac{{Bh\left( {Bh - \gamma_{1} } \right)}}{{\left( \begin{aligned} \left( {Bh + \gamma_{2} } \right)\left( {\cosh (h(\gamma_{1} - \gamma_{2} )) - \sinh (h(\gamma_{1} - \gamma_{2} ))} \right) \hfill \\ - \left( {Bh - \gamma_{1} } \right)\left( {Bh - \gamma_{2} } \right)\left( {\cosh (h(\gamma_{1} - \gamma_{2} )) + \sinh (h(\gamma_{1} - \gamma_{2} ))} \right) \hfill \\ \end{aligned} \right)}},$$
$$E = \frac{1}{2} + \frac{{Nt\left( {C\cosh (\gamma_{1} h) + D\cosh (\gamma_{2} h)} \right)}}{Nb},$$
$$F = \frac{E}{h} - \frac{{CNt\left( {\cosh (\gamma_{1} h) - \sinh (\gamma_{1} h)} \right) - DNt\left( {\cosh (\gamma_{2} h) - \sinh (\gamma_{2} h)} \right)}}{hNb},$$
$$a_{1} = \frac{{Bh\left( {Nb + Nt} \right)}}{{2Nb\left( {hBh + 1} \right)}},a_{2} = \frac{{\Pr Bh\left( {Nb + Nt} \right)}}{{2\left( {hBh + 1} \right)\left( {\Pr Rn + 1} \right)}},a_{3} = \frac{\Pr \beta }{\Pr Rn + 1},a_{4} = \frac{AUhs}{{\kappa \left( {n - 1} \right)}},a_{5} = - \frac{BUhs}{{\kappa \left( {n - 1} \right)}},$$
$$a_{6} = \frac{CGr}{{\gamma_{1}^{3} \left( {n - 1} \right)}} - \frac{BrCNt}{{Nb\gamma_{1}^{3} \left( {n - 1} \right)}},a_{7} = \frac{DGr}{{\gamma_{2}^{3} \left( {n - 1} \right)}} - \frac{BrDNt}{{Nb\gamma_{2}^{3} \left( {n - 1} \right)}},a_{8} = \frac{Br}{{24\left( {n - 1} \right)}},$$
$$a_{9} = \frac{{F_{0} }}{2} - a_{10} h - a_{11} h^{2} - a_{12} h^{3} - a_{13} ,a_{10} = - 1 - 2a_{11} h - 3a_{12} h^{2} - a_{15} ,a_{11} = \frac{{a_{16} - a_{15} }}{4h},$$
$$a_{12} = \frac{{a_{13} - a_{14} - 2ha_{15} - 4h^{2} a_{11} - F_{0} - 2h}}{{4h^{3} }},$$
$$\begin{aligned} a_{13} & = a_{6} \left( {\cosh (\gamma_{1} h) + \sinh (\gamma_{1} h)} \right) + a_{7} \left( {\cosh (\gamma_{2} h) + \sinh (\gamma_{2} h)} \right) \\ & \quad + \,a_{4} \left( {\cosh (\kappa h) + \sinh (\kappa h)} \right) + a_{8} h^{4} + a_{5} \left( {\cosh (\kappa h) - \sinh (\kappa h)} \right), \\ \end{aligned}$$
$$\begin{aligned} a_{14} & = a_{6} \left( {\cosh (\gamma_{1} h) - \sinh (\gamma_{1} h)} \right) + a_{7} \left( {\cosh (\gamma_{2} h) - \sinh (\gamma_{2} h)} \right) \\ & \quad + \,a_{5} \left( {\cosh (\kappa h) + \sinh (\kappa h)} \right) + a_{8} h^{4} + a_{4} \left( {\cosh (\kappa h) - \sinh (\kappa h)} \right), \\ \end{aligned}$$
$$\begin{aligned} a_{15} = a_{6} \gamma_{1} \left( {\cosh (\gamma_{1} h) + \sinh (\gamma_{1} h)} \right) + a_{7} \gamma_{2} \left( {\cosh (\gamma_{2} h) + \sinh (\gamma_{2} h)} \right) \hfill \\ \,\,\,\,\,\,\,\,\,\, - a_{5} \kappa \left( {\cosh (\kappa h) - \sinh (\kappa h)} \right) + 4a_{8} h^{3} + a_{4} \kappa \left( {\cosh (\kappa h) + \sinh (\kappa h)} \right), \hfill \\ \end{aligned}$$
$$\begin{aligned} a_{16} = a_{6} \gamma_{1} \left( {\cosh (\gamma_{1} h) - \sinh (\gamma_{1} h)} \right) + a_{7} \gamma_{2} \left( {\cosh (\gamma_{2} h) - \sinh (\gamma_{2} h)} \right) \hfill \\ \,\,\,\,\,\,\,\,\,\, - a_{5} \kappa \left( {\cosh (\kappa h) + \sinh (\kappa h)} \right) - 4a_{8} h^{3} + a_{4} \kappa \left( {\cosh (\kappa h) - \sinh (\kappa h)} \right), \hfill \\ \end{aligned}$$
$$a_{17} = \frac{{n\left( {72a_{12}^{2} + 96a_{11} a_{8} } \right)}}{{24\left( {n - 1} \right)}},a_{18} = \frac{{864na_{12} a_{8} }}{120(n - 1)},a_{19} = \frac{{1328na_{8}^{2} }}{720(n - 1)},a_{20} = \frac{{n\kappa^{2} a_{4}^{2} }}{4(n - 1)},a_{21} = \frac{{n\kappa^{2} a_{5}^{2} }}{4(n - 1)},$$
$$a_{22} = \frac{{na_{6}^{2} }}{{4\gamma_{1}^{2} (n - 1)}},a_{23} = \frac{{na_{7}^{2} }}{{4\gamma_{2}^{2} (n - 1)}},a_{24} = \frac{{n\left( {4a_{11} a_{4} \kappa^{4} + 24a_{12} a_{9} \kappa^{3} + 48a_{8} a_{4} \kappa^{2} } \right)}}{{\kappa^{4} (n - 1)}},$$
$$a_{25} = \frac{{n\left( {4a_{11} a_{5} \kappa^{4} + 24a_{12} a_{5} \kappa^{3} + 48a_{8} a_{5} \kappa^{2} } \right)}}{{\kappa^{4} (n - 1)}},a_{26} = \frac{{n\left( {2a_{11} a_{6} \gamma_{1}^{4} + 24a_{12} a_{6} \gamma_{1}^{3} + 48a_{8} a_{6} \gamma_{1}^{2} } \right)}}{{\gamma_{1}^{4} (n - 1)}},$$
$$a_{27} = \frac{{n\left( {2a_{11} a_{7} \gamma_{2}^{4} + 24a_{12} a_{7} \gamma_{2}^{3} + 48a_{8} a_{7} \gamma_{2}^{2} } \right)}}{{\gamma_{2}^{4} (n - 1)}},a_{28} = \frac{{n\left( {12a_{12} a_{4} \kappa + 96a_{4} a_{8} } \right)}}{{\kappa^{2} (n - 1)}},$$
$$a_{29} = \frac{{n\left( {12a_{12} a_{5} \kappa - 96a_{5} a_{8} } \right)}}{{\kappa^{2} (n - 1)}},a_{30} = \frac{{n\left( {12a_{12} a_{6} \gamma_{1} + 96a_{6} a_{8} } \right)}}{{\gamma_{1}^{2} (n - 1)}},a_{31} = \frac{{n\left( {12a_{12} a_{7} \gamma_{2} + 96a_{7} a_{8} } \right)}}{{\gamma_{2}^{2} (n - 1)}},$$
$$a_{32} = \frac{{24na_{8} a_{4} }}{{\kappa^{2} (n - 1)}},a_{33} = \frac{{24na_{8} a_{5} }}{{\kappa^{2} (n - 1)}},a_{34} = \frac{{24na_{8} a_{6} }}{{\gamma_{1}^{2} (n - 1)}},a_{35} = \frac{{24na_{8} a_{7} }}{{\gamma_{2}^{2} (n - 1)}},a_{36} = \frac{{2na_{4} a_{6} \kappa^{2} \gamma_{1}^{2} }}{{(\kappa + \gamma_{1} )^{2} (n - 1)}},$$
$$a_{37} = \frac{{2na_{5} a_{6} \kappa^{2} \gamma_{1}^{2} }}{{(\kappa - \gamma_{1} )^{2} (n - 1)}},a_{38} = \frac{{2na_{5} a_{7} \kappa^{2} \gamma_{2}^{2} }}{{(\kappa - \gamma_{2} )^{2} (n - 1)}},a_{39} = \frac{{2na_{6} a_{7} \gamma_{2}^{2} \gamma_{1}^{2} }}{{(\gamma_{1} + \gamma_{2} )^{2} (n - 1)}},a_{40} = \frac{{2na_{4} a_{7} \gamma_{2}^{2} \kappa^{2} }}{{(\kappa + \gamma_{2} )^{2} (n - 1)}},$$
$$a_{41} = \frac{{F_{1} }}{2} - a_{42} h - a_{43} h^{2} - a_{44} h^{3} - a_{45} ,a_{42} = - 2a_{43} h - 3a_{44} h^{2} - a_{47} ,a_{43} = \frac{{a_{48} - a_{47} }}{4h},$$
$$a_{44} = \frac{{a_{45} - a_{46} - 2ha_{47} - 4h^{2} a_{43} - F_{1} }}{{4h^{3} }},$$
$$\begin{aligned} a_{45} & = a_{17} h^{4} + a_{18} h^{5} + a_{19} h^{6} + a_{20} \left( {\cosh (2\kappa h) + \sinh (2\kappa h)} \right) \\ & \quad + \,a_{21} \left( {\cosh (2\kappa h) - \sinh (2\kappa h)} \right) + a_{22} \left( {\cosh (2\gamma_{1} h) + \sinh (2\gamma_{1} h)} \right)\, + a_{23} \left( {\cosh (2\gamma_{2} h) + \sinh (2\gamma_{2} h)} \right) \\ & \quad + \,a_{24} \left( {\cosh (\kappa h) + \sinh (\kappa h)} \right) + a_{25} \left( {\cosh (\kappa h) - \sinh (\kappa h)} \right) + a_{26} \left( {\cosh (\gamma_{1} h) + \sinh (\gamma_{1} h)} \right) \\ & \quad + \,a_{27} \left( {\cosh (\gamma_{2} h) + \sinh (\gamma_{2} h)} \right) + a_{28} \left( {\kappa h - 4} \right)\left( {\cosh (\kappa h) + \sinh (\kappa h)} \right) \\ & \quad + \,a_{29} \left( {\kappa h + 4} \right)\left( {\cosh (\kappa h) - \sinh (\kappa h)} \right) + a_{30} \left( {\gamma_{1} h - 4} \right)\left( {\cosh (\gamma_{1} h) + \sinh (\gamma_{1} h)} \right) \\ & \quad + \,a_{31} \left( {\gamma_{2} h - 4} \right)\left( {\cosh (\gamma_{2} h) + \sinh (\gamma_{2} h)} \right) + a_{32} \left( {\cosh (\kappa h) + \sinh (\kappa h)} \right)\left( {\kappa^{2} h^{2} - 8\kappa h + 12} \right) \\ & \quad + \,a_{33} \left( {\cosh (\kappa h) - \sinh (\kappa h)} \right)\left( {\kappa^{2} h^{2} + 8\kappa h + 12} \right) + a_{34} \left( {\cosh (\gamma_{1} h) + \sinh (\gamma_{1} h)} \right)\left( {\gamma_{1}^{2} h^{2} - 8\gamma_{1} h + 12} \right) \\ & \quad + \,a_{35} \left( {\cosh (\gamma_{2} h) + \sinh (\gamma_{2} h)} \right)\left( {\gamma_{2}^{2} h^{2} - 8\gamma_{2} h + 12} \right) + a_{36} \left( {\cosh ((\gamma_{1} + \kappa )h) + \sinh ((\gamma_{1} + \kappa )h)} \right) \\ & \quad + \,a_{37} \left( {\cosh ((\gamma_{1} - \kappa )h) + \sinh ((\gamma_{1} - \kappa )h)} \right) + a_{38} \left( {\cosh ((\gamma_{2} - \kappa )h) + \sinh ((\gamma_{2} - \kappa )h)} \right) \\ & \quad + \,a_{39} \left( {\cosh ((\gamma_{1} + \gamma_{2} )h) + \sinh ((\gamma_{1} + \gamma_{2} )h)} \right) + a_{40} \left( {\cosh ((\gamma_{2} + \kappa )h) + \sinh ((\gamma_{2} + \kappa )h)} \right), \\ \end{aligned}$$
$$\begin{aligned} a_{46} & = a_{17} h^{4} - a_{18} h^{5} + a_{19} h^{6} + \,a_{20} \left( {\cosh (2\kappa h) - \sinh (2\kappa h)} \right) + a_{21} \left( {\cosh (2\kappa h) + \sinh (2\kappa h)} \right) \\ & \quad + \,a_{22} \left( {\cosh (2\gamma_{1} h) - \sinh (2\gamma_{1} h)} \right)\, + a_{23} \left( {\cosh (2\gamma_{2} h) - \sinh (2\gamma_{2} h)} \right) \\ & \quad + \,a_{24} \left( {\cosh (\kappa h) - \sinh (\kappa h)} \right) + a_{25} \left( {\cosh (\kappa h) + \sinh (\kappa h)} \right) + a_{26} \left( {\cosh (\gamma_{1} h) - \sinh (\gamma_{1} h)} \right) \\ & \quad + \,a_{27} \left( {\cosh (\gamma_{2} h) - \sinh (\gamma_{2} h)} \right) - a_{28} \left( {\kappa h + 4} \right)\left( {\cosh (\kappa h) - \sinh (\kappa h)} \right) \\ & \quad + \,a_{29} \left( {4 - \kappa h} \right)\left( {\cosh (\kappa h) + \sinh (\kappa h)} \right) + a_{30} \left( {4 - \gamma_{1} h} \right)\left( {\cosh (\gamma_{1} h) - \sinh (\gamma_{1} h)} \right) \\ & \quad + \,a_{31} \left( {4 - \gamma_{2} h} \right)\left( {\cosh (\gamma_{2} h) - \sinh (\gamma_{2} h)} \right) + a_{32} \left( {\cosh (\kappa h) - \sinh (\kappa h)} \right)\left( {\kappa^{2} h^{2} + 8\kappa h + 12} \right) \\ & \quad + \,a_{33} \left( {\cosh (\kappa h) + \sinh (\kappa h)} \right)\left( {\kappa^{2} h^{2} - 8\kappa h + 12} \right) + a_{34} \left( {\cosh (\gamma_{1} h) - \sinh (\gamma_{1} h)} \right)\left( {\gamma_{1}^{2} h^{2} + 8\gamma_{1} h + 12} \right) \\ & \quad + \,a_{35} \left( {\cosh (\gamma_{2} h) - \sinh (\gamma_{2} h)} \right)\left( {\gamma_{2}^{2} h^{2} + 8\gamma_{2} h + 12} \right) + a_{36} \left( {\cosh ((\gamma_{1} + \kappa )h) - \sinh ((\gamma_{1} + \kappa )h)} \right) \\ & \quad + \,a_{37} \left( {\cosh ((\gamma_{1} - \kappa )h) - \sinh ((\gamma_{1} - \kappa )h)} \right) + a_{38} \left( {\cosh ((\gamma_{2} - \kappa )h) - \sinh ((\gamma_{2} - \kappa )h)} \right) \\ & \quad + \,a_{39} \left( {\cosh ((\gamma_{1} + \gamma_{2} )h) - \sinh ((\gamma_{1} + \gamma_{2} )h)} \right) + a_{40} \left( {\cosh ((\gamma_{2} + \kappa )h) - \sinh ((\gamma_{2} + \kappa )h)} \right), \\ \end{aligned}$$
$$\begin{aligned} a_{47} & = 4a_{17} h^{3} + 5a_{18} h^{4} + 6a_{19} h^{5} + a_{39} \left( {\gamma_{1} + \gamma_{2} } \right)\left( {\cosh ((\gamma_{1} + \gamma_{2} )h) + \sinh ((\gamma_{1} + \gamma_{2} )h)} \right) \\ & \quad - \,a_{34} \left( {\cosh (\gamma_{1} h) + \sinh (\gamma_{1} h)} \right)\left( { - 2h\gamma_{1}^{2} + 8\gamma_{1} } \right) - a_{35} \left( {\cosh (\gamma_{2} h) + \sinh (\gamma_{2} h)} \right)\left( { - 2h\gamma_{2}^{2} + 8\gamma_{2} } \right) \\ & \quad - \,a_{36} (\gamma_{1} + \kappa )\left( {\cosh (h(\gamma_{1} + \kappa )) + \sinh (h(\gamma_{1} + \kappa ))} \right) + a_{40} (\gamma_{2} + \kappa )\left( {\cosh (h(\gamma_{2} + \kappa )) + \sinh (h(\gamma_{2} + \kappa ))} \right) \\ & \quad - \,2a_{21} \kappa \left( {\cosh (2h\kappa ) - \sinh (2h\kappa )} \right) - 2a_{25} \kappa \left( {\cosh (h\kappa ) - \sinh (h\kappa )} \right) + a_{29} \kappa \left( {\cosh (h\kappa ) - \sinh (h\kappa )} \right) \\ & \quad - \,a_{32} \left( {\cosh (h\kappa ) + \sinh (h\kappa )} \right)( - 2h\kappa^{2} + 8\kappa ) + a_{37} \left( {\cosh (h(\gamma_{1} - \kappa )) + \sinh (h(\gamma_{1} - \kappa ))} \right)(\gamma_{1} - \kappa ) \\ & \quad + \,a_{38} \left( {\cosh (h(\gamma_{2} - \kappa )) + \sinh (h(\gamma_{2} - \kappa ))} \right)(\gamma_{2} - \kappa ) + a_{33} \left( {\cosh (h\kappa ) - \sinh (h\kappa )} \right)(2h\kappa^{2} + 8\kappa ) \\ & \quad + \,2a_{22} \gamma_{1} \left( {\cosh (2h\gamma_{1} ) + \sinh (2h\gamma_{1} )} \right) + a_{26} \gamma_{1} \left( {\cosh (h\gamma_{1} ) + \sinh (h\gamma_{1} )} \right) + a_{30} \gamma_{1} \left( {\cosh (h\gamma_{1} ) + \sinh (h\gamma_{1} )} \right) \\ & \quad + \,2a_{23} \gamma_{2} \left( {\cosh (2h\gamma_{2} ) + \sinh (2h\gamma_{2} )} \right) + a_{27} \gamma_{2} \left( {\cosh (h\gamma_{2} ) + \sinh (h\gamma_{2} )} \right) + a_{31} \gamma_{2} \left( {\cosh (h\gamma_{2} ) + \sinh (h\gamma_{2} )} \right) \\ & \quad + \,2a_{20} \kappa \left( {\cosh (2h\kappa ) + \sinh (2h\kappa )} \right) + (a_{24} + a_{28} )\kappa \left( {\cosh (h\kappa ) + \sinh (h\kappa )} \right) \\ & \quad + \,a_{34} \gamma_{1} \left( {\cosh (h\gamma_{1} ) + \sinh (h\gamma_{1} )} \right)\left( {\gamma_{1}^{2} h^{2} - 8\gamma_{1} h + 12} \right) + a_{35} \gamma_{2} \left( {\cosh (h\gamma_{2} ) + \sinh (h\gamma_{2} )} \right)\left( {\gamma_{2}^{2} h^{2} - 8\gamma_{2} h + 12} \right) \\ & \quad + \,a_{30} \gamma_{1} (\gamma_{1} h - 4)\left( {\cosh (h\gamma_{1} ) + \sinh (h\gamma_{1} )} \right) + a_{31} \gamma_{2} (\gamma_{2} h - 4)\left( {\cosh (h\gamma_{2} ) + \sinh (h\gamma_{2} )} \right) \\ & \quad + \,a_{28} \kappa (\kappa h - 4)\left( {\cosh (h\kappa ) + \sinh (h\kappa )} \right) + a_{32} \kappa \left( {\cosh (h\kappa ) + \sinh (h\kappa )} \right)\left( {\kappa^{2} h^{2} - 8\kappa h + 12} \right) \\ & \quad - \,a_{29} \kappa \left( {\cosh (h\kappa ) - \sinh (h\kappa )} \right)(\kappa h + 4) - a_{33} \kappa \left( {\cosh (h\kappa ) - \sinh (h\kappa )} \right)(\kappa^{2} h^{2} + 8\kappa h + 12), \\ \end{aligned}$$
$$\begin{aligned} a_{48} & = - 4a_{17} h^{3} + 5a_{18} h^{4} - 6a_{19} h^{5} + a_{39} \left( {\gamma_{1} + \gamma_{2} } \right)\left( {\cosh ((\gamma_{1} + \gamma_{2} )h) - \sinh ((\gamma_{1} + \gamma_{2} )h)} \right) \\ & \quad - \,a_{34} \left( {\cosh (\gamma_{1} h) - \sinh (\gamma_{1} h)} \right)\left( {2h\gamma_{1}^{2} + 8\gamma_{1} } \right) - a_{35} \left( {\cosh (\gamma_{2} h) - \sinh (\gamma_{2} h)} \right)\left( {2h\gamma_{2}^{2} + 8\gamma_{2} } \right) \\ & \quad - \,a_{36} (\gamma_{1} + \kappa )\left( {\cosh (h(\gamma_{1} + \kappa )) - \sinh (h(\gamma_{1} + \kappa ))} \right) + a_{40} (\gamma_{2} + \kappa )\left( {\cosh (h(\gamma_{2} + \kappa )) - \sinh (h(\gamma_{2} + \kappa ))} \right) \\ & \quad - \,2a_{21} \kappa \left( {\cosh (2h\kappa ) + \sinh (2h\kappa )} \right) - 2a_{25} \kappa \left( {\cosh (h\kappa ) + \sinh (h\kappa )} \right) + a_{29} \kappa \left( {\cosh (h\kappa ) + \sinh (h\kappa )} \right) \\ & \quad - \,a_{32} \left( {\cosh (h\kappa ) - \sinh (h\kappa )} \right)(2h\kappa^{2} + 8\kappa ) + a_{37} \left( {\cosh (h(\gamma_{1} - \kappa )) - \sinh (h(\gamma_{1} - \kappa ))} \right)(\gamma_{1} - \kappa ) \\ & \quad + \,a_{38} \left( {\cosh (h(\gamma_{2} - \kappa )) - \sinh (h(\gamma_{2} - \kappa ))} \right)(\gamma_{2} - \kappa ) + a_{33} \left( {\cosh (h\kappa ) + \sinh (h\kappa )} \right)( - 2h\kappa^{2} + 8\kappa ) \\ & \quad + \,2a_{22} \gamma_{1} \left( {\cosh (2h\gamma_{1} ) - \sinh (2h\gamma_{1} )} \right) + a_{26} \gamma_{1} \left( {\cosh (h\gamma_{1} ) - \sinh (h\gamma_{1} )} \right) + a_{30} \gamma_{1} \left( {\cosh (h\gamma_{1} ) - \sinh (h\gamma_{1} )} \right) \\ & \quad + \,2a_{23} \gamma_{2} \left( {\cosh (2h\gamma_{2} ) - \sinh (2h\gamma_{2} )} \right) + a_{27} \gamma_{2} \left( {\cosh (h\gamma_{2} ) - \sinh (h\gamma_{2} )} \right) + a_{31} \gamma_{2} \left( {\cosh (h\gamma_{2} ) - \sinh (h\gamma_{2} )} \right) \\ & \quad + \,2a_{20} \kappa \left( {\cosh (2h\kappa ) - \sinh (2h\kappa )} \right) + (a_{24} + a_{28} )\kappa \left( {\cosh (h\kappa ) - \sinh (h\kappa )} \right) \\ & \quad + \,a_{34} \gamma_{1} \left( {\cosh (h\gamma_{1} ) - \sinh (h\gamma_{1} )} \right)\left( {\gamma_{1}^{2} h^{2} + 8\gamma_{1} h + 12} \right) + a_{35} \gamma_{2} \left( {\cosh (h\gamma_{2} ) - \sinh (h\gamma_{2} )} \right)\left( {\gamma_{2}^{2} h^{2} + 8\gamma_{2} h + 12} \right) \\ & \quad - \,a_{30} \gamma_{1} (\gamma_{1} h + 4)\left( {\cosh (h\gamma_{1} ) - \sinh (h\gamma_{1} )} \right) - a_{31} \gamma_{2} (\gamma_{2} h + 4)\left( {\cosh (h\gamma_{2} ) - \sinh (h\gamma_{2} )} \right) \\ & \quad - \,a_{28} \kappa (\kappa h + 4)\left( {\cosh (h\kappa ) - \sinh (h\kappa )} \right) + a_{32} \kappa \left( {\cosh (h\kappa ) - \sinh (h\kappa )} \right)\left( {\kappa^{2} h^{2} + 8\kappa h + 12} \right) \\ & \quad - \,a_{29} \kappa \left( {\cosh (h\kappa ) + \sinh (h\kappa )} \right)( - \kappa h + 4) - a_{33} \kappa \left( {\cosh (h\kappa ) + \sinh (h\kappa )} \right)(\kappa^{2} h^{2} - 8\kappa h + 12), \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayavel, P., Jhorar, R., Tripathi, D. et al. Electroosmotic flow of pseudoplastic nanoliquids via peristaltic pum**. J Braz. Soc. Mech. Sci. Eng. 41, 61 (2019). https://doi.org/10.1007/s40430-018-1555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1555-0

Keywords

Navigation