Log in

Linear quantile regression models for longitudinal experiments: an overview

  • Published:
METRON Aims and scope Submit manuscript

Abstract

We provide an overview of linear quantile regression models for continuous responses repeatedly measured over time. We distinguish between marginal approaches, that explicitly model the data association structure, and conditional approaches, that consider individual-specific parameters to describe dependence among data and overdispersion. General estimation schemes are discussed and available software options are listed. We also mention methods to deal with non-ignorable missing values, with spatially dependent observations and nonparametric and semiparametric models. The paper is concluded by an overview of open issues in longitudinal quantile regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrevaya, J., Dahl, C.M.: The effects of birth inputs on birthweight: evidence from the quantile estimation on panel data. J. Bus. Econ. Stat. 26, 379–397 (2008)

    MathSciNet  Google Scholar 

  2. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Second International Symposium on Information Theory, pp. 267–281. Akademinai Kiado, Budapest (1973)

  3. Andrews, D.W.K., Buchinsky, M.: A three-step method for choosing the number of bootstrap repetitions. Econometrica 68, 23–52 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Austin, P.C., Schull, M.J.: Quantile regression: a statistical tool for out-of-hospital research. Acad. Emerg. Med. 10, 789–797 (2003)

    Google Scholar 

  5. Bartolucci, F.: Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities. J. R. Stat. Soc. Ser. B 68, 155–178 (2006)

    MathSciNet  Google Scholar 

  6. Bartolucci, F., Farcomeni, A., Pandolfi, S., Pennoni, F.: LMest: an R package for latent Markov models for categorical longitudinal data (2015). ar**v:1501.04448

  7. Bartolucci, F., Farcomeni, A., Pennoni, F.: Latent Markov Models for Longitudinal Data. Chapman & Hall/CRC Press, London/Boca Raton (2013)

  8. Bartolucci, F., Farcomeni, A., Pennoni, F.: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates (with discussion). TEST 23, 433–486 (2014)

    MathSciNet  Google Scholar 

  9. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41, 164–171 (1970)

    MathSciNet  MATH  Google Scholar 

  10. Booth, J.G., Hobert, J.P.: Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. R. Stat. Soc. Ser. B 61, 265–285 (1999)

    MATH  Google Scholar 

  11. Bottai, M., Cai, B., McKeown, R.E.: Logistic quantile regression for bounded outcomes. Stat. Med. 29, 309–317 (2010)

    MathSciNet  Google Scholar 

  12. Brown, B.M., Wang, Y.G.: Standard errors and covariance matrices for smoothed rank estimators. Biometrika 92(1), 149–158 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Buchinsky, M.: Estimating the asymptotic covariance matrix for quantile regression models: a Monte Carlo study. J. Econom. 68, 303–338 (1995a)

    MathSciNet  MATH  Google Scholar 

  14. Buchinsky, M.: Quantile regression, Box–Cox transformation model, and the US wage structure. J. Econom. 65, 109–154 (1995b)

    MATH  Google Scholar 

  15. Cade, B.S., Noon, B.R., Flather, C.H.: Quantile regression reveals hidden bias and uncertainty in habitat models. Ecology 86, 786–800 (2005)

    Google Scholar 

  16. Cai, Z., Xu, X.: Nonparametric quantile estimations for dynamic smooth coefficient models. J. Am. Stat. Assoc. 103, 1595–1608 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Canay, I.A.: A simple approach to quantile regression for panel data. Econom. J. 14(3), 368–386 (2011)

  18. Capogna, G., Camorcia, M., Stirparo, S., Valentini, G., Garassino, A., Farcomeni, A.: Multidimensional evaluation of pain during early and late labor: a comparison of nulliparous and multiparous women. Int. J. Obstet. Anesth. 19, 167–170 (2010)

    Google Scholar 

  19. Chen, L., Wei, L.J., Parzen, M.I.: Quantile regression for correlated observations. In: Proceedings of the Second Seattle Symposium in Biostatistics: Analysis of Correlated Data, vol. 179, pp. 51–70 (2004)

  20. Chernozhukov, V.: Extremal quantile regression. Ann. Stat. 33, 806–839 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Chernozhukov, V., Fernandez-Val, I.: Subsampling on quantile regression processes. Indian J. Stat. 67, 253–276 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Chernozhukov, V., Fernández-Val, I.: Inference for extremal conditional quantile models, with an application to market and birthweight risks. Rev. Econ. Stud. 78, 559–589 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Chernozhukov, V., Hansen, C.: Instrumental variable quantile regression: a robust inference approach. J. Econom. 142(1), 379–398 (2008)

    MathSciNet  Google Scholar 

  24. Crouchley, R., Davies, R.B.: A comparison of population average and random-effect models for the analysis of longitudinal count data with base-line information. J. R. Stat. Soc. Ser. A 162, 331–347 (1999)

    Google Scholar 

  25. Daniel-Spiegel, E., Weiner, E., Yarom, I., Doveh, E., Friedman, P., Cohen, A., Shalev, E.: Establishment of fetal biometric charts using quantile regression analysis. J. Ultrasound Med. 32, 23–33 (2013)

    Google Scholar 

  26. Davis, S.: Semi-parametric and non-parametric methods for the analysis of repeated measurements with applications to clinical trials. Stat. Med. 10, 1959–1980 (1991)

    Google Scholar 

  27. De Gooijer, J., Zerom, D.: On additive conditional quantiles with high-dimensional covariates. J. Am. Stat. Assoc. 98, 135–146 (2003)

    MATH  Google Scholar 

  28. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39, 1–38 (1977). With discussion

    MathSciNet  MATH  Google Scholar 

  29. Diggle, P.J., Kenward, M.G.: Informative drop-out in longitudinal data analysis (with discussion). Appl. Stat. 43, 49–93 (1994)

    MATH  Google Scholar 

  30. Diggle, P.J., Heagerty, P.J., Liang, K.Y., Zeger, S.L.: Analysis of Longitudinal Data, 2nd edn. Oxford Statistical Science Series, vol. 25. Oxford University Press, New York (2002)

  31. Dunson, D.B., Pillai, N., Park, J.-H.: Bayesian density regression. J. R. Stat. Soc. Ser. B 69, 163–183 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Fabrizi, E., Farcomeni, A., Gatta, V.: Modelling work history patterns in the Italian labour market. Stat. Methods Appl. 21, 227–247 (2012)

    MathSciNet  Google Scholar 

  33. Farcomeni, A.: Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat. Comput. 22, 141–152 (2012)

    MathSciNet  Google Scholar 

  34. Farcomeni, A., Greco, L.: Robust Methods for Data Reduction. Chapman & Hall/CRC Press, London/Boca Raton (2015)

  35. Farcomeni, A., Ventura, L.: An overview of robust methods in medical research. Stat. Methods Med. Res. 21, 111–133 (2012)

    MathSciNet  Google Scholar 

  36. Farcomeni, A., Viviani, S.: Longitudinal quantile regression in presence of informative drop-out through longitudinal-survival joint modeling. Stat. Med. 34, 1199–1213 (2015)

    MathSciNet  Google Scholar 

  37. Fenske, N., Fahrmeir, L., Hothorn, T., Rzehak, P., Höhle, M.: Boosting structured additive quantile regression for longitudinal childhood obesity data. Int. J. Biostat. 9, 1–18 (2013)

    Google Scholar 

  38. Fieberg, J., Rieger, R.H., Zicus, M.C., Schildcrout, J.S.: Regression modelling of correlated data in ecology: subject-specific and population averaged response patterns. J. Appl. Ecol. 46, 1018–1025 (2009)

    Google Scholar 

  39. Fitzmaurice, G.M., Laird, N.M., Ware, J.H.: Applied Longitudinal Analysis. Wiley-Interscience, Hoboken (2004)

    MATH  Google Scholar 

  40. Fu, L., Wang, Y.-G.: Quantile regression for longitudinal data with a working correlation model. Comput. Stat. Data Anal. 56, 2526–2538 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Galvao, A.F.: Quantile regression for dynamic panel data with fixed effects. J. Econom. 164(1), 142–157 (2011)

    MathSciNet  Google Scholar 

  42. Galvao, A.F., Montes-Rojas, G.V.: Penalized quantile regression for dynamic panel data. J. Stat. Plan. Inference 140, 3476–3497 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Geraci, M.: Estimation of regression quantiles in complex surveys with data missing at random: an application to birthweight determinants. Stat. Methods Med. Res. 1–29 (2013). doi:10.1177/0962280213484401

  44. Geraci, M.: Linear quantile mixed models: the lqmm package for Laplace quantile regression. J. Stat. Softw. 57, 1–29 (2014)

    Google Scholar 

  45. Geraci, M., Bottai, M.: Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8(1), 140–54 (2007)

    MATH  Google Scholar 

  46. Geraci, M., Bottai, M.: Linear quantile mixed models. Stat. Comput. 24, 461–479 (2014)

    MathSciNet  Google Scholar 

  47. Geraci, M., Farcomeni, A.: Probabilistic principal component analysis to identify profiles of physical activity behaviours in the presence of nonignorable missing data. J. R. Stat. Soc. Ser. C 65(1), 1–25 (2016)

    Google Scholar 

  48. Geraci, M., Jones, C.: Prediction of conditional quantiles on the half line and the unit interval using transformation models. In: Cabras, S., Di Battista, T., Racugno, W. (eds.) Proceedings of the 47th Scientific Meeting of the Italian Statistical Society. Cooperativa Universitaria Editrice Cagliaritana, Cagliari (2014)

    Google Scholar 

  49. Hahn, P.R., Burgette, L.F.: The mesa distribution: an approximation likelihood for simultaneous nonlinear quantile regression. University of Chicago, Tech. rep. (2012)

  50. Hallin, M., Lu, Z., Yu, K.: Local linear spatial quantile regression. Bernoulli 15, 659–686 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Hallin, M., Paindaveine, D., Siman, M.: Multivariate quantiles and multiple-output regression quantiles: from \(l_1\) optimization to halfspace depth. Ann. Stat. 38, 635–669 (2010)

    MathSciNet  MATH  Google Scholar 

  52. Han, E., Powell, L.M.: Fast food prices and adult body weight outcomes: evidence based on longitudinal quantile regression models. Contemp. Econ. Policy 31, 528–536 (2013)

    Google Scholar 

  53. Hansen, L.P.: Large sample properties of generalized method of moments estimators. Econometrica 50, 1029–1054 (1982)

    MathSciNet  MATH  Google Scholar 

  54. Hao, L., Naiman, D.Q.: Quantile Regression. Sage, New York (2007)

  55. Harding, M., Lamarche, C.: A quantile regression approach for estimating panel data models using instrumental variables. Econ. Lett. 104(3), 133–135 (2009)

    MathSciNet  MATH  Google Scholar 

  56. He, X., Fu, B., Fung, W.K.: Median regression of longitudinal data. Stat. Med. 22, 3655–3669 (2003)

    Google Scholar 

  57. Heritier, S., Cantoni, E., Copt, S., Victoria-Feser, M.P.: Robust Methods in Biostatistics. Wiley, New York (2009)

    MATH  Google Scholar 

  58. Horowitz, J.L., Lee, S.: Nonparametric estimation of an additive quantile regression model. J. Am. Stat. Assoc. 100, 1238–1249 (2005)

    MathSciNet  MATH  Google Scholar 

  59. Huber, P.J.: The behavior of maximum likelihood estimates under nonstandard conditions. In: Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 221–223 (1967)

  60. Jung, S.: Quasi-likelihood for median regression models. J. Am. Stat. Assoc. 91(433), 251–257 (1996)

    MATH  Google Scholar 

  61. Karlsson, A.: Nonlinear quantile regression estimation of longitudinal data. Commun. Stat. Simul. Comput. 37(1), 114–131 (2008)

    MathSciNet  MATH  Google Scholar 

  62. Koenker, R.: Quantile regression for longitudinal data. J. Multivar. Anal. 91, 74–89 (2004)

    MathSciNet  MATH  Google Scholar 

  63. Koenker, R.: Quantile Regression. Cambridge University Press, London (2005)

  64. Koenker, R., Bassett Jr, G.: Regression quantiles. Econometrica 46(1), 33–50 (1978)

    MathSciNet  MATH  Google Scholar 

  65. Koenker, R., d’Orey, V.: Computing regression quantiles. Appl. Stat. 36, 383–393 (1987)

    Google Scholar 

  66. Koenker, R., d’Orey, V.: A remark on algorithm AS229: computing dual regression quantiles and regression rank scores. Appl. Stat. 43, 410–414 (1994)

    Google Scholar 

  67. Koenker, R., Hallock, K.: Quantile regression. J. Econ. Perspect. 15, 143–156 (2001)

    Google Scholar 

  68. Koenker, R., Machado, J.A.F.: Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 94(448), 1296–1310 (1999)

    MathSciNet  MATH  Google Scholar 

  69. Koenker, R., Mizera, I.: Penalized triograms: total variation regularization for bivariate smoothing. J. R. Stat. Soc. Ser. B 66, 145–163 (2004)

    MathSciNet  MATH  Google Scholar 

  70. Koenker, R., Ng, P., Portnoy, S.: Quantile smoothing splines. Biometrika 81, 673–680 (1994)

    MathSciNet  MATH  Google Scholar 

  71. Kostov, P.: A spatial quantile regression hedonic model of agricultural land prices. Spat. Econ. Anal. 4(1), 53–72 (2009)

    Google Scholar 

  72. Laird, N.M., Ware, J.H.: Random-effects models for longitudinal data. Biometrics 38(4), 963–974 (1982)

  73. Lamarche, C.: Robust penalized quantile regression estimation for panel data. J. Econom. 157, 396–408 (2010)

    MathSciNet  Google Scholar 

  74. Lee, Y., Nelder, J.A.: Conditional and marginal models: another view. Stat. Sci. 19, 219–238 (2004)

    MathSciNet  Google Scholar 

  75. Leng, C., Zang, W.: Smoothing combined estimating equations in quantile regression for longitudinal data. Stat. Comput. 24, 123–136 (2014)

    MathSciNet  Google Scholar 

  76. Li, D., Peng, L., Yang, J.: Bias reduction for high quantiles. J. Stat. Plan. Inference 140, 2433–2441 (2010)

    MathSciNet  MATH  Google Scholar 

  77. Li, Y., Liu, Y., Zhu, J.: Quantile regression in reproducing kernel Hilbert spaces. J. Am. Stat. Assoc. 102, 255–268 (2007)

    MathSciNet  MATH  Google Scholar 

  78. Liang, K.Y., Zeger, S.L.: Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22 (1986)

    MathSciNet  Google Scholar 

  79. Lindsey, J.K., Lambert, P.: On the appropriateness of marginal models for repeated measurements in clinical trials. Stat. Med. 17, 447–469 (1998)

    Google Scholar 

  80. Lipsitz, S.R., Fitzmaurice, G.M., Molenberghs, G., Zhao, L.P.: Quantile regression methods for longitudinal data with drop-outs: application to CD4 cell counts of patients infected with the human immunodeficiency virus. J. R. Stat. Soc. Ser. C 46, 463–476 (1997)

    MATH  Google Scholar 

  81. Little, R.J.A.: Modeling the drop-out mechanism in repeated-measures studies. J. Am. Stat. Assoc. 90, 1112–1121 (1995)

    MathSciNet  MATH  Google Scholar 

  82. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, New York (2002)

  83. Liu, Y., Bottai, M.: Mixed-effects models for conditional quantiles with longitudinal data. Int. J. Biostat. 5(1), 1–24 (2009)

    MathSciNet  MATH  Google Scholar 

  84. Lu, Z., Tang, Q., Cheng, L.: Estimating spatial quantile regression with functional coefficients: a robust semiparametric framework. Bernoulli 20, 164–189 (2014)

    MathSciNet  MATH  Google Scholar 

  85. Lu, Z., Tang, Q., Cheng, L.: Estimating spatial quantile regression with functional coefficients: a robust semiparametric framework (2014). ar**v:1402.0958

  86. Lum, K., Gelfand, A.E.: Spatial quantile multiple regression using the asymmetric Laplace process. Bayesian Anal. 7, 235–258 (2012)

    MathSciNet  Google Scholar 

  87. Luo, Y., Lian, H., Tian, M.: Bayesian quantile regression for longitudinal data models. J. Stat. Comput. Simul. 82(11), 1635–1649 (2012)

  88. Machado, J.A.F., Mata, J.: Counterfactual decomposition of changes in wage distributions using quantile regression. J. Appl. Econom. 20, 445–465 (2005)

    MathSciNet  Google Scholar 

  89. Marino, M.F., Tzavidis, N., Alfó, M.: Quantile regression for longitudinal data: unobserved heterogeneity and informative missingness (2015). ar**v:1501.02157v2

  90. McMillen, D.P.: Quantile Regression for Spatial Data. Springer, Berlin (2013)

  91. Mu, Y.M., He, X.M.: Power transformation toward a linear regression quantile. J. Am. Stat. Assoc. 102, 269–279 (2007)

    MathSciNet  MATH  Google Scholar 

  92. Mu, Y.M., Wei, Y.: A dynamic quantile regression transformation model for longitudinal data. Stat. Sin. 19, 1137–1153 (2009)

    MathSciNet  MATH  Google Scholar 

  93. Neuhaus, J.M., Kalbfleisch, J.D., Hauck, W.W.: A comparison of cluster-specific and population-averaged approaches for correlated binary data. Int. Stat. Rev. 59, 25–35 (1991)

    Google Scholar 

  94. Neuhaus, J.M., McCulloch, C.E., Boylan, R.: Estimation of covariate effects in generalized linear mixed models with a misspecified distribution of random intercept and slopes. Stat. Med. 32(14), 2419–2429 (2013)

    MathSciNet  Google Scholar 

  95. Newey, W.K., Powell, J.L.: Asymmetric least squares estimation and testing. Econometrica 55, 819–847 (1987)

    MathSciNet  MATH  Google Scholar 

  96. Parzen, M.I., Wei, L.J., Ying, Z.: A resampling method based on pivotal estimating functions. Biometrika 81, 341–350 (1994)

    MathSciNet  MATH  Google Scholar 

  97. Portnoy, S., Koenker, R.: The Gaussian hare and the Laplacean tortoise: computability of squared-error vs absolute error estimators (with discussion). Stat. Sci. 12, 279–300 (1997)

    MathSciNet  MATH  Google Scholar 

  98. Powell, D.: Unconditional quantile treatment effects in the presence of covariates. Tech. rep., RAND working paper (2010)

  99. Reich, B.J., Bondell, H.D., Wang, H.J.: Flexible Bayesian quantile regression for independent and clustered data. Biostatistics 11, 337–352 (2010)

    Google Scholar 

  100. Reich, B.J., Fuentes, M., Dunson, D.B.: Bayesian spatial quantile regression. J. Am. Stat. Assoc. 106, 6–20 (2011)

    MathSciNet  Google Scholar 

  101. Rizopoulos, D., Verbeke, G., Molenberghs, G.: Shared parameter models under random effects misspecification. Biometrika 95(1), 63–74 (2008)

    MathSciNet  MATH  Google Scholar 

  102. Rosen, A.M.: Set identification via quantile restrictions in short panels. J. Econom. 166(1), 127–137 (2012)

    Google Scholar 

  103. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    MATH  Google Scholar 

  104. Takeuchi, I., Le, Q., Sears, T., Smola, A.: Nonparametric quantile estimation. J. Mach. Learn. Res. 7, 1231–1264 (2006)

    MathSciNet  MATH  Google Scholar 

  105. Tang, C.Y., Leng, C.: Empirical likelihood and quantile regression in longitudinal data analysis. Biometrika 89, 1001–1006 (2011)

    MathSciNet  Google Scholar 

  106. Todkar, S.T., Kadane, J.B.: Simultaneous linear quantile regression: a semiparametric Bayesian approach. Bayesian Anal. 6, 1–22 (2011)

    MathSciNet  Google Scholar 

  107. Wang, H.J., Fygenson, M.: Inference for censored quantile regression models in longitudinal studies. Ann. Stat. 37, 756–781 (2009)

    MathSciNet  MATH  Google Scholar 

  108. Wang, H.J., Li, D., He, X.: Estimation of high conditional quantiles for heavy-tailed distributions. J. Am. Stat. Assoc. 107, 1453–1464 (2012)

    MathSciNet  MATH  Google Scholar 

  109. Wang, H.J., Zhu, Z., Zhou, J.: Quantile regression in partially linear varying coefficient models. Ann. Stat. 37, 3841–3866 (2009)

    MathSciNet  MATH  Google Scholar 

  110. Wedderburn, R.W.M.: Quasi-likelihood functions, generalized linear models, and the Gauss–Newton method. Biometrika 61(3), 439–447 (1974)

    MathSciNet  MATH  Google Scholar 

  111. Wei, Y., He, X.: Conditional growth charts. Ann. Stat. 34, 2069–2097 (2006)

    MathSciNet  MATH  Google Scholar 

  112. Wei, Y., Pere, A., Koenker, R., He, X.: Quantile regression methods for reference growth charts. Stat. Med. 25, 1369–1382 (2006)

    MathSciNet  Google Scholar 

  113. Weiss, R.E.: Modeling Longitudinal Data. Springer Texts in Statistics. Springer, New York (2005)

    Google Scholar 

  114. Wu, M.C., Carroll, R.J.: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44(1), 175–188 (1988)

    MathSciNet  Google Scholar 

  115. Yi, G.Y., He, W.: Median regression models for longitudinal data with dropouts. Biometrics 65, 618–625 (2009)

    MathSciNet  MATH  Google Scholar 

  116. Yin, G., Cai, J.: Quantile regression models with multivariate failure time data. Biometrics 61, 151–161 (2005)

    MathSciNet  MATH  Google Scholar 

  117. Yu, K., Lu, Z.: Local linear additive quantile regression. Scand. J. Stat. 31, 333–346 (2004)

    MathSciNet  MATH  Google Scholar 

  118. Yu, K., Lu, Z., Stander, J.: Quantile regression: applications and current research areas. J. R. Stat. Soc. Ser. D 52, 331–350 (2003)

    MathSciNet  Google Scholar 

  119. Yu, K., Moyeed, R.A.: Bayesian quantile regression. Stat. Probab. Lett. 54(4), 437–447 (2001)

    MathSciNet  MATH  Google Scholar 

  120. Yuan, Y., Yin, G.: Bayesian quantile regression for longitudinal studies with nonignorable missing data. Biometrics 66(1), 105–114 (2010)

    MathSciNet  MATH  Google Scholar 

  121. Yue, Y.R., Rue, H.: Bayesian inference for additive mixed quantile regression models. Comput. Stat. Data Anal. 55, 84–96 (2011)

    MathSciNet  Google Scholar 

  122. Wei, G.C.G., Tanner, M.A.: A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. J. Am. Stat. Assoc. 85, 699–704 (1990)

  123. Zeger, S.L., Liang, K.Y., Albert, P.S.: Models for longitudinal data: a generalized estimating equation approach. Biometrics 4, 1049–1060 (1988)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to two referees for several suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Francesca Marino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marino, M.F., Farcomeni, A. Linear quantile regression models for longitudinal experiments: an overview. METRON 73, 229–247 (2015). https://doi.org/10.1007/s40300-015-0072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40300-015-0072-5

Keywords

Navigation