Log in

Contribution of Histone Deacetylases in Prognosis and Therapeutic Management of Cholangiocarcinoma

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Cholangiocarcinoma (CCA), a malignant tumor that occurs in the epithelium of the biliary tract, has a very poor prognosis because affected patients are frequently diagnosed at an advanced stage and recurrence after resection is common. Over the last two decades, our understanding of the molecular biology of this malignancy has expanded, and various studies have explored targeted therapy for CCA in order to improve patient survival. The histone acetylation/deacetylation equilibrium is affected in carcinogenesis, leading to altered chromatin structure and therefore changes in gene expression. Understanding the molecular identity of histone deacetylases (HDACs), their cellular interactions and potential role as anticancer agents will help us develop new therapeutic strategies for CCA-affected patients. Furthermore, HDAC inhibitors act on cellular stress response pathways and decrease cancer angiogenesis. Downregulation of pro-angiogenic genes such as vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 (HIF-1), and endothelial nitric oxide synthase (eNOS) inhibit formation of new vessels and can negatively affect the metastatic process. Finally, recent clinical trials prove that administration of both HDAC inhibitors and DNA-targeting chemotherapeutic agents, such as topoisomerase inhibitors, DNA intercalating agents, inhibitors of DNA synthesis, covalently modifying DNA agents, and ionizing radiation, maximizes the anticancer effect by increasing the cytotoxic efficiency of a variety of DNA-damaging anticancer drugs. Therefore, combination therapy of classic chemotherapeutic drugs with HDAC inhibitors can act synergistically for the patients’ benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011;54(1):173–84.

    Article  CAS  PubMed  Google Scholar 

  2. Boris B. Cholangiocarcinoma: current knowledge and new developments. Gut Liver. 2017;11(1):13–26.

    Article  Google Scholar 

  3. Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26:5420–32.

    Article  CAS  PubMed  Google Scholar 

  4. Kwak T, Kim D, Jeong YI, Kang DH. Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells. J Nanobiotechnol. 2015;13:60.

    Article  CAS  Google Scholar 

  5. Li Z, Zhu WG. Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications. Int J Biol Sci. 2014;10:757–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maeshima K, Tamura S, Shimamoto Y. Chromatin as a nuclear spring. Biophys Physicobiol. 2018;15:189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kouraklis G, Theocharis S. Histone deacetylase inhibitors: a novel target of anticancer therapy. Oncol Rep. 2006;15:489–94.

    CAS  PubMed  Google Scholar 

  8. Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: paradigms, puzzles, and potential. Biochim Biophys Acta. 2016;1865(2):275–88.

    CAS  PubMed  Google Scholar 

  9. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  CAS  PubMed  Google Scholar 

  10. Perri F, Longo F, Giuliano M, Sabbatino F, Favia G, Ionna F, et al. Epigenetic control of gene expression: potential implications for cancer treatment. Crit Rev Oncol Hematol. 2017;111:166–72.

    Article  CAS  PubMed  Google Scholar 

  11. Li G, Margueron R, Hu G, Stokes D, Wang YH, Reinberg D, et al. Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol Cell. 2010;38(1):41–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Damaskos C, Garmpis N, Karatzas T, Nikolidakis L, Kostakis ID, Garmpi A, et al. Histone deacetylase (HDAC) inhibitors: current evidence for therapeutic activities in pancreatic cancer. Anticancer Res. 2015;35(6):3129–35.

    CAS  PubMed  Google Scholar 

  13. Schizas D, Mastoraki A, Naar L, Spartalis E, Tsilimigras DI, Karachaliou GS, et al. Concept of histone deacetylases in cancer: Reflections on esophageal carcinogenesis and treatment. World J Gastroenterol. 2018;24(41):4635–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee KK, Workman JK. Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol. 2007;8(4):284–95.

    Article  CAS  PubMed  Google Scholar 

  15. Cai MH, Xu XG, Yan SL, Sun Z, Ying Y, Wang BK, et al. Depletion of HDAC1, 7 and 8 by histone deacetylase inhibition confers elimination of pancreatic cancer stem cells in combination with gemcitabine. Sci Rep. 2018;8(1):1621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhu BY, Shung BY, Du Y, Li Y, Li L, Xu XD, et al. A new HDAC inhibitor cinnamoylphenazine shows antitumor activity in association with intensive macropinocytosis. Oncotarget. 2017;8(9):14748–58.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Song J, Noh JH, Lee JH, Eun JW, Ahn YM, Kim SY, et al. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS. 2005;113(4):264–8.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Göttlicher M. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004;5:455–63.

    Article  CAS  PubMed  Google Scholar 

  19. Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001;92:1300–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilson AJ, Byun DS, Popova N, Murray LB, L’Italien K, Sowa Y, et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem. 2006;281:13548–58.

    Article  CAS  PubMed  Google Scholar 

  21. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7):1414.

    Article  PubMed Central  CAS  Google Scholar 

  22. Afifi S, Michael A, Azimi M, Rodriguez M, Lendvai N, Landgren O. Role of histone deacetylase inhibitors in relapsed refractory multiple myeloma: a focus on vorinostat and panobinostat. Pharmacotherapy. 2015;35(12):1173–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000;97:10014–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sandor V, Senderowicz A, Mertins S, Sackett D, Sausville E, Blagosklonny MV, et al. P21-dependent G1arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer. 2000;83:817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gius D, Cui H, Bradbury CM, Cook J, Smart DK, Zhao S, et al. Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell. 2004;6:361–71.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao Y, Lu S, Wu L, Chai G, Wang H, Chen Y, et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol Cell Biol. 2006;26:2782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cecconi D, Donadelli M, Dalla Pozza E, Rinalducci S, Zolla L, Scupoli MT, et al. Synergistic effect of trichostatin A and 5-aza-2′-deoxycytidine on growth inhibition of pancreatic endocrine tumour cell lines: a proteomic study. Proteomics. 2009;9:1952–66.

    Article  CAS  PubMed  Google Scholar 

  28. Kim HJ, Bae SC. Histone deacetylase inhibitors. Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 2011;3:166–79.

    CAS  PubMed  Google Scholar 

  29. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6(1):38–51.

    Article  CAS  PubMed  Google Scholar 

  30. Fulda S. Modulation of TRAIL-induced apoptosis by HDAC inhibitors. Curr Cancer Drug Targets. 2008;8(2):132–40.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Göttlicher M, et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004;5(5):455–63.

    Article  CAS  PubMed  Google Scholar 

  32. Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, et al. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA. 2001;98(19):10833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res. 2003;63(13):3637–45.

    CAS  PubMed  Google Scholar 

  34. Zhang J, Zhong Q. Histone deacetylase inhibitors and cell death. Cell Mol Life Sci. 2014;71(20):3885–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao YS, Hubbert CC, Lu J, Lee YS, Lee JY, Yao TP, et al. Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis. Mol Cell Biol. 2007;27(24):8637–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adams CM, Hiebert SW, Eischen CM. Myc Induces miRNA-mediated apoptosis in response to HDAC inhibition in hematologic malignancies. Cancer Res. 2016;76(3):736–48.

    Article  CAS  PubMed  Google Scholar 

  37. Brockdorff N. Noncoding RNA and Polycomb recruitment. RNA. 2013;19:429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang H, Zhong Y, **e H, Lai X, Xu M, Nie Y, et al. Induction of the liver cancer-down-regulated long noncoding RNA uc002mbe.2 mediates trichostatin-induced apoptosis of liver cancer cells. Biochem Pharmacol. 2013;85:1761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  CAS  PubMed  Google Scholar 

  40. Zupkovitz G, Tischler J, Posch M, Sadzak I, Ramsauer K, Egger G, et al. Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol Cell Biol. 2006;26:7913–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007;21:1790–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Montgomery R, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Investig. 2008;118:3588–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Woan KV, Lienlaf M, Perez-Villaroel P, Lee C, Cheng F, Knox T, et al. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: enhanced antitumor immunity and impaired cell proliferation. Mol Oncol. 2015;9:1447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng F, Lienlaf M, Wang HW, Perez-Villarroel P, Lee C, Woan K, et al. A novel role for histone deacetylase 6 in the regulation of the tolerogenic STAT3/IL-10 pathway in APCs. J Immunol. 2014;193:2850–62.

    Article  CAS  PubMed  Google Scholar 

  45. Kroesen M, Gielen P, Brok IC, et al. HDAC inhibitors and immunotherapy; a double edged sword? Oncotarget. 2014;5:6558–72.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Stiborová M, Eckschlager T, Poljaková J, Hraběta J, Adam V, Kizek R, et al. The synergistic effects of DNA-targeted chemotherapeutics and histone deacetylase inhibitors as therapeutic strategies for cancer treatment. Curr Med Chem. 2012;19(25):4218–38.

    Article  PubMed  Google Scholar 

  47. Morine Y, Shimada M, Iwahashi S, Utsunomiya T, Imura S, Ikemoto T, et al. Role of histone deacetylase expression in intrahepatic cholangiocarcinoma. Surgery. 2012;151(3):412–9.

    Article  PubMed  Google Scholar 

  48. He JC, Yao W, Wang JM, Schemmer P, Yang Y, Liu Y, et al. TACC3 overexpression in cholangiocarcinoma correlates with poor prognosis and is a potential anti-cancer molecular drug target for HDAC inhibitors. Oncotarget. 2016;7(46):75441–56.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhu YJ, Xu Q, Shao MY, Cao XY, Wu ZR, Chen YW, Bu H, Shi YJ. Decreased expression of HDAC8 indicates poor prognosis in patients with intrahepatic cholangiocarcinoma. Hepatobiliary Pancreat Dis Int. 2019;18(5):464–70.

    Article  PubMed  Google Scholar 

  50. Xu L, Wang L, Zhou L, Dorfman RG, Pan Y, Tang D, et al. The SIRT2/cMYC pathway inhibits peroxidation-related apoptosis in cholangiocarcinoma through metabolic reprogramming. Neoplasia. 2019;21(5):429–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iwahashi S, Ishibashi H, Utsunomiya T, Morine Y, Ochir TL, Hanaoka J, et al. Effect of histone deacetylase inhibitor in combination with 5-fluorouracil on pancreas cancer and cholangiocarcinoma cell lines. J Med Invest. 2011;58(1–2):106–9.

    Article  PubMed  Google Scholar 

  52. Iwahashi S, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, et al. Histone deacetylase inhibitor enhances the anti-tumor effect of gemcitabine: a special reference to gene-expression microarray analysis. Oncol Rep. 2011;26(5):1057–62.

    CAS  PubMed  Google Scholar 

  53. Matoba K, Iizuka N, Gondo T, Ishihara T, Yamada-Okabe H, Tamesa T, et al. Tumor HLA-DR expression linked to early intrahepatic recurrence of hepatocellular carcinoma. Int J Cancer. 2005;115(2):231–40.

    Article  CAS  PubMed  Google Scholar 

  54. Ma XC, Hattori T, Kushima R, Terata N, Kodama M. Expression of HLA-class II antigen in gastric carcinomas. Its relationship to histopathological grade, lymphocyte infiltration and five-year survival rate. Acta Oncol. 1994;33(2):187–90.

    Article  CAS  PubMed  Google Scholar 

  55. Sriraksa R, Limpaiboon T. Histone deacetylases and their inhibitors as potential therapeutic drugs for cholangiocarcinoma—cell line findings. Asian Pac J Cancer Prev. 2013;14(4):2503–8.

    Article  PubMed  Google Scholar 

  56. Wang JH, Lee EJ, Ji M, Park SM. HDAC inhibitors, trichostatin A and valproic acid, increase ecadherin and vimentin expression but inhibit migration and invasion of cholangiocarcinoma cells. Oncol Rep. 2018;40(1):346–54.

    CAS  PubMed  Google Scholar 

  57. Du B, Shim JS. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21(7):E965.

    Article  PubMed  CAS  Google Scholar 

  58. Baradari V, Hopfner M, Huether A, Schuppan D, Scherübl H. Histone deacetylase inhibitor MS-275 alone or combined with bortezomib or sorafenib exhibits strong antiproliferative action in human cholangiocarcinoma cells. World J Gastroenterol. 2007;13(33):4458–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou W, Chen X, He K, **ao J, Duan X, Huang R, et al. Histone deacetylase inhibitor screening identifies HC toxin as the most effective in intrahepatic cholangiocarcinoma cells. Oncol Rep. 2016;35(5):2535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krumm A, Barckhausen C, Kücük P, Tomaszowski KH, Loquai C, Fahrer J, et al. Enhanced histone deacetylase activity in malignant melanoma provokes RAD51 and FANCD2-triggered drug resistance. Cancer Res. 2016;76(10):3067–77.

    Article  CAS  PubMed  Google Scholar 

  61. Saenglee S, Senawong G, Jogloy S, Sripa B, Senawong T. Peanut testa extracts possessing histone deacetylase inhibitory activity induce apoptosis in cholangiocarcinoma cells. Biomed Pharmacother. 2018;98:233–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aikaterini Mastoraki.

Ethics declarations

Conflict of Interest

Aikaterini Mastoraki, Dimitrios Schizas, Nikolaos Charalampakis, Leon Naar, Maria Ioannidi, Diamantis Tsilimigras, Maria Sotiropoulou, Dimitrios Moris, Pantelis Vassiliu, and Evangelos Felekouras have no conflicts to report.

Funding

The authors have no funding to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastoraki, A., Schizas, D., Charalampakis, N. et al. Contribution of Histone Deacetylases in Prognosis and Therapeutic Management of Cholangiocarcinoma. Mol Diagn Ther 24, 175–184 (2020). https://doi.org/10.1007/s40291-020-00454-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-020-00454-x

Navigation