Log in

Role of microRNAs in the Therapeutic Effects of Curcumin in Non-Cancer Diseases

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Curcumin is a bioactive polyphenol occurring in the rhizomes of Curcuma longa. It is well-reputed for its chemopreventive and anticancer properties; however, recent evidence has revealed numerous biological and pharmacological effects of curcumin that are relevant to the treatment of non-cancer diseases. Mechanistically, curcumin exerts its pharmacological effects through anti-inflammatory and antioxidant mechanisms via interaction with different signaling molecules and transcription factors. In addition, epigenetic modulators such as microRNAs (miRs) have emerged as novel targets of curcumin. Curcumin was found to modulate the expression of several pathogenic miRs in brain, ocular, renal, and liver diseases. The present systematic review was conducted to identify miRs that are regulated by curcumin in non-cancer diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal. 2008;10(3):511–46.

    Article  CAS  PubMed  Google Scholar 

  2. Akram M, Shahab-Uddin AA, Usmanghani K, Hannan A, Mohiuddin E, Asif M. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol. 2010;55:65–70.

    Google Scholar 

  3. Clinical development plan. curcumin. J Cell Biochem Suppl. 1996;26:72–85.

    Google Scholar 

  4. Mahady G, Pendland S, Yun G, Lu Z. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res. 2001;22(6C):4179–81.

    Google Scholar 

  5. Kuttan R, Bhanumathy P, Nirmala K, George M. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett. 1985;29(2):197–202.

    Article  CAS  PubMed  Google Scholar 

  6. Valiahdi SM, Iranshahi M, Sahebkar A. Cytotoxic activities of phytochemicals from Ferula species. DARU. 2013;21(1):39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iranshahi M, Sahebkar A, Hosseini S, Takasaki M, Konoshima T, Tokuda H. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine. 2010;17(3):269–73.

    Article  CAS  PubMed  Google Scholar 

  8. Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 2010;29(3):405–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Esmaily H, Sahebkar A, Iranshahi M, Ganjali S, Mohammadi A, Ferns G, et al. An investigation of the effects of curcumin on anxiety and depression in obese individuals: a randomized controlled trial. Chin J Integr Med. 2015;21(5):332–8.

    Article  CAS  PubMed  Google Scholar 

  10. Chen FY, Zhou J, Guo N, Ma WG, Huang X, Wang H, Yuan ZY. Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis. Biochem Biophys Res Commun. 2015;467(4):872–8.

    Article  CAS  PubMed  Google Scholar 

  11. Sahebkar A, Mohammadi A, Atabati A, Rahiman S, Tavallaie S, Iranshahi M, et al. Curcuminoids modulate pro-oxidant–antioxidant balance but not the immune response to heat shock protein 27 and oxidized LDL in obese individuals. Phytother Res. 2013;27(12):1883–8.

    Article  CAS  PubMed  Google Scholar 

  12. Panahi Y, Alishiri GH, Parvin S, Sahebkar A. Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: results of a randomized controlled trial. J Diet Suppl. 2016;13(2):209–20.

    Article  CAS  PubMed  Google Scholar 

  13. Panahi Y, Rahimnia AR, Sharafi M, Alishiri G, Saburi A, Sahebkar A. Curcuminoid Treatment for knee osteoarthritis: a randomized double-blind placebo-controlled trial. Phytother Res. 2014;28(11):1625–31.

    Article  CAS  PubMed  Google Scholar 

  14. Ganjali S, Sahebkar A, Mahdipour E, Jamialahmadi K, Torabi S, Akhlaghi S, et al. Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. SciWorldJ. 2014;2014:898361.

    Google Scholar 

  15. Panahi Y, Saadat A, Beiraghdar F, Sahebkar A. Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: a randomized double-blind placebo-controlled trial. Phytother Res. 2014;28(10):1461–7.

    Article  CAS  PubMed  Google Scholar 

  16. Panahi Y, Sahebkar A, Parvin S, Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem. 2012;49(6):580–8.

    Article  CAS  PubMed  Google Scholar 

  17. Panahi Y, Ghanei M, Bashiri S, Hajihashemi A, Sahebkar A. Short-term curcuminoid supplementation for chronic pulmonary complications due to sulfur mustard intoxication: positive results of a randomized double-blind placebo-controlled trial. Drug Res. 2015;65(11):567–73.

    CAS  Google Scholar 

  18. Mohammadi A, Sahebkar A, Iranshahi M, Amini M, Khojasteh R, Ghayour-Mobarhan M, et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res. 2013;27(3):374–9.

    Article  CAS  PubMed  Google Scholar 

  19. Um MY, Hwang KH, Choi WH, Ahn J, Jung CH, Ha TY. Curcumin attenuates adhesion molecules and matrix metalloproteinase expression in hypercholesterolemic rabbits. Nutr Res. 2014;34(10):886–93.

    Article  CAS  PubMed  Google Scholar 

  20. Yang YS, Su YF, Yang HW, Lee YH, Chou JI, Ueng KC. Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Phytother Res. 2014;28(12):1770–7.

    Article  CAS  PubMed  Google Scholar 

  21. Sahebkar A. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother Res. 2014;28(5):633–42.

    Article  CAS  PubMed  Google Scholar 

  22. Fan C, Wo X, Qian Y, Yin J, Gao L. Effect of curcumin on the expression of LDL receptor in mouse macrophages. J Ethnopharmacol. 2006;105(1–2):251–4.

    Article  CAS  PubMed  Google Scholar 

  23. Arafa HM. Curcumin attenuates diet-induced hypercholesterolemia in rats. Med Sci Mon. 2005;11(7):BR228–34.

  24. Asai A, Miyazawa T. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J Nutr. 2001;131(11):2932–5.

    CAS  PubMed  Google Scholar 

  25. Sahebkar A. Curcuminoids for the management of hypertriglyceridaemia. Nat Rev Cardiol. 2014;11(2):123.

    Article  CAS  PubMed  Google Scholar 

  26. Sahebkar A. Low-density lipoprotein is a potential target for curcumin: novel mechanistic insights. Basic Clin Pharmacol Toxicol. 2014;114(6):437–8.

    Article  CAS  PubMed  Google Scholar 

  27. Seyedzadeh MH, Safari Z, Zare A, Gholizadeh Navashenaq J, Razavi SA, Kardar GA, et al. Study of curcumin immunomodulatory effects on reactive astrocyte cell function. Int Immunopharmacol. 2014;22(1):230–5.

    Article  CAS  PubMed  Google Scholar 

  28. Sankar P, Telang AG, Suresh S, Kesavan M, Kannan K, Kalaivanan R, et al. Immunomodulatory effects of nanocurcumin in arsenic-exposed rats. Int Immunopharmacol. 2013;17(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  29. Sahebkar A, Cicero AF, Simental-Mendia LE, Aggarwal BB, Gupta SC. Curcumin downregulates human tumor necrosis factor-alpha levels: a systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res. 2016;107:234–42.

    Article  CAS  PubMed  Google Scholar 

  30. Sharma O. Antioxidant activity of curcumin and related compounds. Biochem Pharmacol. 1976;25(15):1811–2.

    Article  CAS  PubMed  Google Scholar 

  31. Panahi Y, Sahebkar A, Amiri M, Davoudi SM, Beiraghdar F, Hoseininejad SL, et al. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: results of a randomised, double-blind, placebo-controlled trial. Br J Nutr. 2012;108(7):1272–9.

    Article  CAS  PubMed  Google Scholar 

  32. Sahebkar A. Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors. 2013;39(2):197–208.

    Article  CAS  PubMed  Google Scholar 

  33. Shen LL, Jiang ML, Liu SS, Cai MC, Hong ZQ, Lin LQ, et al. Curcumin improves synaptic plasticity impairment induced by HIV-1gp120 V3 loop. Neural Regen Res. 2015;10(6):925–31.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen K, An Y, Tie L, Pan Y, Li X. Curcumin protects neurons from glutamate-induced excitotoxicity by membrane anchored AKAP79-PKA interaction network. Evid Based Complement Alternat Med. 2015;2015:706207.

    PubMed  PubMed Central  Google Scholar 

  35. Wang BF, Cui ZW, Zhong ZH, Sun YH, Sun QF, Yang GY, et al. Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression. Acta Pharmacol Sin. 2015;36(8):939–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Y, Wu X, Wei Z, Dou Y, Zhao D, Wang T, et al. Oral curcumin has anti-arthritic efficacy through somatostatin generation via cAMP/PKA and Ca(2 +)/CaMKII signaling pathways in the small intestine. Pharmacol Res. 2015;95–96:71–81.

    Article  PubMed  CAS  Google Scholar 

  37. Kuncha M, Naidu VG, Sahu BD, Gadepalli SG, Sistla R. Curcumin potentiates the anti-arthritic effect of prednisolone in Freund’s complete adjuvant-induced arthritic rats. J Pharm Pharmacol. 2014;66(1):133–44.

    Article  CAS  PubMed  Google Scholar 

  38. Kumar K, Rai AK. Proniosomal formulation of curcumin having anti-inflammatory and anti-arthritic activity in different experimental animal models. Die Pharmazie. 2012;67(10):852–7.

    CAS  PubMed  Google Scholar 

  39. Panahi Y, Badeli R, Karami GR, Sahebkar A. Investigation of the efficacy of adjunctive therapy with bioavailability-boosted curcuminoids in major depressive disorder. Phytother Res. 2015;29(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  40. Sahebkar A, Henrotin Y. Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials. Pain Med. 2015. doi:10.1093/pm/pnv024

    PubMed  Google Scholar 

  41. Sharma S, Kulkarni SK, Chopra K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol. 2006;33(10):940–5.

    Article  CAS  PubMed  Google Scholar 

  42. Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, Kuroda M, et al. Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem. 2005;53(4):959–63.

    Article  CAS  PubMed  Google Scholar 

  43. Sahebkar A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril. 2010;94(5):e75–6 (author reply e7).

  44. Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis. 2014;232(1):40–51.

    Article  CAS  PubMed  Google Scholar 

  45. Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, et al. Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 1998;6(2):167–77.

    Article  CAS  PubMed  Google Scholar 

  46. Negi P, Jayaprakasha G, Jagan Mohan Rao L, Sakariah K. Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem. 1999;47(10):4297–300.

  47. Jordan W, Drew C. Curcumin: a natural herb with anti-HIV activity. J Natl Med Assoc. 1996;88(6):333.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim M-K, Choi G-J, Lee H-S. Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J Agric Food Chem. 2003;51(6):1578–81.

    Article  CAS  PubMed  Google Scholar 

  49. Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Comm. 2005;326(2):472–4.

    Article  CAS  PubMed  Google Scholar 

  50. Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14(3):277.

    Google Scholar 

  51. Teiten MH, Dicato M, Diederich M. Curcumin as a regulator of epigenetic events. Mol Nutr Food Res. 2013;57(9):1619–29.

    Article  CAS  PubMed  Google Scholar 

  52. Li Y, Kong D, Wang Z, Sarkar FH. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res. 2010;27(6):1027–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sawan C, Vaissière T, Murr R, Herceg Z. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res. 2008;642(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  54. Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X, et al. Roles of microRNA on cancer cell metabolism. J Transl Med. 2012;10:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297(5589):2056–60.

    Article  PubMed  CAS  Google Scholar 

  56. Williams RJ, Spencer JP. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med. 2012;52(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  57. Ng R, Song G, Roll GR, Frandsen NM, Willenbring H. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest. 2012;122(3):1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang P, Bill K, Liu J, Young E, Peng T, Bolshakov S, et al. MiR-155 is a liposarcoma oncogene that targets casein kinase-1α and enhances β-catenin signaling. Cancer Res. 2012;72(7):1751–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci. 2006;103(33):12481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Png KJ, Halberg N, Yoshida M, Tavazoie SF. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature. 2012;481(7380):190–4.

    Article  CAS  Google Scholar 

  62. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.

    Article  CAS  PubMed  Google Scholar 

  63. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  CAS  PubMed  Google Scholar 

  64. Li Y, Kowdley KV. MicroRNAs in common human diseases. Genom Proteom Bioinform. 2012;10(5):246–53.

    Article  CAS  Google Scholar 

  65. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91(3):827–87.

    Article  CAS  PubMed  Google Scholar 

  66. Erson A, Petty E. MicroRNAs in development and disease. Clin Genet. 2008;74(4):296–306.

    Article  CAS  PubMed  Google Scholar 

  67. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115(2):209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wynn T. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zheng J, Wu C, Lin Z, Guo Y, Shi L, Dong P, et al. Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation–a novel mechanism suppressing liver fibrosis. FEBS J. 2014;281(1):88–103.

    Article  CAS  PubMed  Google Scholar 

  70. Hassan ZK, Al-Olayan EM. Curcumin reorganizes miRNA expression in a mouse model of liver fibrosis. Asian Pac J Cancer Prev. 2012;13:5405–8.

    Article  PubMed  Google Scholar 

  71. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.

    Article  CAS  PubMed  Google Scholar 

  72. Yang N, Mahato RI. GFAP promoter-driven RNA interference on TGF-β1 to treat liver fibrosis. Pharm Res. 2011;28(4):752–61.

    Article  CAS  PubMed  Google Scholar 

  73. Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl). 2008;201(3):435–42.

    Article  CAS  PubMed  Google Scholar 

  74. Wang R, Li Y-B, Li Y-H, Xu Y, Wu H-L, Li X-J. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res. 2008;1210:84–91.

  75. Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav. 2009;92(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  76. Li Y-C, Wang F-M, Pan Y, Qiang L-Q, Cheng G, Zhang W-Y, et al. Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(3):435–49.

    Article  CAS  PubMed  Google Scholar 

  77. Bishnoi M, Chopra K, Kulkarni SK. Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain. Pharmacol Biochem Behav. 2008;88(4):511–22.

    Article  CAS  PubMed  Google Scholar 

  78. Sharma S, Chopra K, Kulkarni SK. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytother Res. 2007;21(3):278–83.

    Article  CAS  PubMed  Google Scholar 

  79. Kulkarni S, Dhir A, Akula KK. Potentials of curcumin as an antidepressant. SciWorldJ. 2009;9:1233–41.

    CAS  Google Scholar 

  80. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280(7):5892–901.

    Article  CAS  PubMed  Google Scholar 

  81. Patil SP, Tran N, Geekiyanage H, Liu L, Chan C. Curcumin-induced upregulation of the anti-tau cochaperone BAG2 in primary rat cortical neurons. Neurosci Lett. 2013;554:121–5.

    Article  CAS  PubMed  Google Scholar 

  82. Shakeri A, Sahebkar A. Optimized curcumin formulations for the treatment of Alzheimer’s disease: a patent evaluation. J Neurosci Res. 2016;94(2):111–3.

    Article  CAS  PubMed  Google Scholar 

  83. Sahebkar A. Autophagic activation: a key piece of the puzzle for the curcumin-associated cognitive enhancement? J Psychopharmacol. 2016;30(1):93–4.

    Article  CAS  PubMed  Google Scholar 

  84. Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430(7000):631–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee M-S, Kwon YT, Li M, Peng J, Friedlander RM, Tsai L-H. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature. 2000;405(6784):360–4.

    Article  CAS  PubMed  Google Scholar 

  86. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42(3):631–9.

    Article  CAS  PubMed  Google Scholar 

  87. Barrachina M, Maes T, Buesa C, Ferrer I. Lysosome-associated membrane protein 1 (LAMP-1) in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2006;32(5):505–16.

    Article  CAS  PubMed  Google Scholar 

  88. Carrettiero DC, Hernandez I, Neveu P, Papagiannakopoulos T, Kosik KS. The cochaperone BAG2 sweeps paired helical filament-insoluble tau from the microtubule. J Neurosci. 2009;29(7):2151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neuroscience Lett. 2009;459(2):100–4.

    Article  CAS  Google Scholar 

  90. Lukiw WJ, Zhao Y, Cui JG. An NF-κB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem. 2008;283(46):31315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lukiw WJ, Pogue AI. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem. 2007;101(9):1265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ. Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-κB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem. 2010;285(50):38951–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pogue AI, Percy ME, Cui J-G, Li YY, Bhattacharjee S, Hill JM, et al. Up-regulation of NF-kB-sensitive miRNA-125b and miRNA-146a in metal sulfate-stressed human astroglial (HAG) primary cell cultures. J Inorg Biochem. 2011;105(11):1434–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li Y, Cui J, Hill J, Bhattacharjee S, Zhao Y, Lukiw W. Increased expression of miRNA-146a in Alzheimer’s disease transgenic mouse models. Neurosci Lett. 2011;487(1):94–8.

    Article  CAS  PubMed  Google Scholar 

  95. Angel-Morales G, Noratto G, Mertens-Talcott SU. Standardized curcuminoid extract (Curcuma longa l.) decreases gene expression related to inflammation and interacts with associated microRNAs in human umbilical vein endothelial cells (HUVEC). Food Funct. 2012;3(12):1286–93.

  96. Zaky A, Mahmoud M, Awad D, El Sabaa BM, Kandeel KM, Bassiouny AR. Valproic acid potentiates curcumin-mediated neuroprotection in lipopolysaccharide induced rats. Front Cell Neurosci. 2014;8:337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Howell JC, Chun E, Farrell AN, Hur EY, Caroti CM, Iuvone PM, et al. Global microRNA expression profiling: curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis. 2013;19:544.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lukiw WJ, Surjyadipta B, Dua P, Alexandrov PN. Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer’s disease (AD) and in age-related macular degeneration (AMD). Int J Biochem Mol Biol. 2012;3(1):105–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hill JM, Dua P, Clement C, Lukiw WJ. An evaluation of progressive amyloidogenic and pro-inflammatory change in the primary visual cortex and retina in Alzheimer’s disease (AD). Front Neurosci. 2014;8:347.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hu S, Maiti P, Ma Q, Zuo X, Jones MR, Cole GM, et al. Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother. 2015;15(6):629–37.

    Article  CAS  PubMed  Google Scholar 

  101. Wang LL, Sun Y, Huang K, Zheng L. Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res. 2013;57(9):1557–68.

    Article  CAS  PubMed  Google Scholar 

  102. Gross JL, De Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164–76.

    Article  PubMed  Google Scholar 

  103. Giunti S, Barit D, Cooper ME. Mechanisms of diabetic nephropathy role of hypertension. Hypertension. 2006;48(4):519–26.

    Article  CAS  PubMed  Google Scholar 

  104. Hostetter TH, Rennke HG, Brenner BM. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med. 1982;72(3):375–80.

    Article  CAS  PubMed  Google Scholar 

  105. Dessapt C, Baradez MO, Hayward A, Dei Cas A, Thomas SM, Viberti G, et al. Mechanical forces and TGFβ1 reduce podocyte adhesion through α3β1 integrin downregulation. Nephrol Dial Transplant. 2009;24(9):2645–55.

    Article  CAS  PubMed  Google Scholar 

  106. Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV. The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol. 2013;304(4):F333–47.

    Article  CAS  PubMed  Google Scholar 

  107. Hartner A, Cordasic N, Menendez-Castro C, Volkert G, Yabu JM, Kupraszewicz-Hutzler M, et al. Lack of α8-integrin aggravates podocyte injury in experimental diabetic nephropathy. Am J Physiol Renal Physiol. 2010;299(5):F1151–7.

    Article  CAS  PubMed  Google Scholar 

  108. Valastyan S, Weinberg RA. Roles for microRNAs in the regulation of cell adhesion molecules. J Cell Sci. 2011;124(7):999–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li D, Lu Z, Jia J, Zheng Z, Lin S. Changes in microRNAs associated with podocytic adhesion damage under mechanical stress. J Renin Angiotensin Aldosterone Syst. 2013;14(2):97–102.

    Article  PubMed  CAS  Google Scholar 

  110. Li D, Lu Z, Jia J, Zheng Z, Lin S. miR-124 is related to podocytic adhesive capacity damage in STZ-induced uninephrectomized diabetic rats. Kidney Blood Press Res. 2013;37(4–5):422–31.

    Article  CAS  PubMed  Google Scholar 

  111. Moini Zanjani T, Ameli H, Labibi F, Sedaghat K, Sabetkasaei M. The attenuation of pain behavior and serum COX-2 concentration by curcumin in a rat model of neuropathic pain. Korean J Pain. 2014;27(3):246–52.

  112. Wei C, Möller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med. 2008;14(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  113. Palanisamy N, Kannappan S, Anuradha CV. Genistein modulates NF-κB-associated renal inflammation, fibrosis and podocyte abnormalities in fructose-fed rats. Eur J Pharmacol. 2011;667(1):355–64.

    Article  CAS  PubMed  Google Scholar 

  114. Wang W, Ding X-Q, Gu T-T, Song L, Li J-M, Xue Q-C, et al. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377. Free Radicl Biol Med. 2015;83:214–26.

    Article  CAS  Google Scholar 

  115. Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19(11):2150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhdanova O, Srivastava S, Di L, Li Z, Tchelebi L, Dworkin S, et al. The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int. 2011;80(7):719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol. 2008;19(11):2069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol. 2008;19(11):2159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ding XQ, Gu TT, Wang W, Song L, Chen TY, Xue QC, et al. Curcumin protects against fructose-induced podocyte insulin signaling impairment through upregulation of miR-206. Mol Nutr Food Res. 2015;59(12):2355–70.

    Article  CAS  PubMed  Google Scholar 

  120. Huang GS, Yang S-M, Hong M-Y, Yang P-C, Liu Y-C. Differential gene expression of livers from ApoE deficient mice. Life Sci. 2000;68(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  121. Milenkovic D, Deval C, Gouranton E, Landrier J-F, Scalbert A, Morand C, et al. Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLoS One. 2012;7(1):e29837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li D, Lu Z, Jia J, Zheng Z, Lin S. Curcumin ameliorates podocytic adhesive capacity damage under mechanical stress by inhibiting miR-124 expression. Kidney Blood Press Res. 2013;38(1):61–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The support provided by the Iran National Science Foundation (Tehran, Iran) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

Conflict of interest

Amir Abbas Momtazi, Giuseppe Derosa, Pamela Maffioli, Maciej Banach, and Amirhossein Sahebkar declare that they have no conflicts of interest.

Funding

No funding was received for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momtazi, A.A., Derosa, G., Maffioli, P. et al. Role of microRNAs in the Therapeutic Effects of Curcumin in Non-Cancer Diseases. Mol Diagn Ther 20, 335–345 (2016). https://doi.org/10.1007/s40291-016-0202-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0202-7

Keywords

Navigation