Log in

Effects of Plyometric Jump Training on Repeated Sprint Ability in Athletes: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

There is a growing body of research examining the effects of plyometric jump training (PJT) on repeated sprint ability (RSA) in athletes. However, available studies produced conflicting findings and the literature has not yet been systematically reviewed. Therefore, the effects of PJT on RSA indices remain unclear.

Objective

To explore the effects of PJT on RSA in athletes.

Methods

Searches for this review were conducted in four databases. We included studies that satisfied the following criteria: (1) examined the effects of a PJT exercise intervention on measures of RSA; (2) included athletes as study participants, with no restriction for sport practiced, age or sex; and (3) included a control group. The random-effects model was used for the meta-analyses. The methodological quality of the included studies was assessed using the PEDro checklist.

Results

From 6367 search records initially identified, 13 studies with a total of 16 training groups (n = 198) and 13 control groups (n = 158) were eligible for meta-analysis. There was a significant effect of PJT on RSA best sprint (ES = 0.75; p = 0.002) and RSA mean sprint (ES = 0.36; p = 0.045) performance. We did not find a significant difference between control and PJT for RSA fatigue resistance (ES = 0.16; p = 0.401). The included studies were classified as being of “moderate” or “high” methodological quality. Among the 13 included studies, none reported injury or any other adverse events.

Conclusion

PJT improves RSA best and mean performance in athletes, while there were no significant differences between control and PJT for RSA fatigue resistance. Improvements in RSA in response to PJT are likely due to neuro-mechanical factors (e.g., strength, muscle activation and coordination) that affect actual sprint performance rather than the ability to recover between sprinting efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duthie G, Pyne D, Hooper S. Applied physiology and game analysis of rugby union. Sports Med. 2003;33(13):973–91.

    Article  PubMed  Google Scholar 

  2. Naser N, Ali A, Macadam P. Physical and physiological demands of futsal. J Exerc Sci Fit. 2017;15(2):76–80.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carling C, Le Gall F, Dupont G. Analysis of repeated high-intensity running performance in professional soccer. J Sports Sci. 2012;30(4):325–36.

    Article  PubMed  Google Scholar 

  4. Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35(9):757–77.

    Article  PubMed  Google Scholar 

  5. Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41(8):673–94.

    Article  PubMed  Google Scholar 

  6. Spencer M, Bishop D, Dawson B, Goodman C. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med. 2005;35(12):1025–44.

    Article  PubMed  Google Scholar 

  7. Impellizzeri FM, Rampinini E, Castagna C, Bishop D, Ferrari Bravo D, Tibaudi A, et al. Validity of a repeated-sprint test for football. Int J Sports Med. 2008;29(11):899–905.

    Article  CAS  PubMed  Google Scholar 

  8. Rampinini E, Sassi A, Morelli A, Mazzoni S, Fanchini M, Coutts AJ. Repeated-sprint ability in professional and amateur soccer players. Appl Physiol Nutr Metab. 2009;34(6):1048–54.

    Article  PubMed  CAS  Google Scholar 

  9. Abrantes C, Maçãs V, Sampaio J. Variation in football players’ sprint test performance across different ages and levels of competition. J Sports Sci Med. 2004;3(Yisi 1):44–9.

    PubMed  PubMed Central  Google Scholar 

  10. Spencer M, Fitzsimons M, Dawson B, Bishop D, Goodman C. Reliability of a repeated-sprint test for field-hockey. J Sci Med Sport. 2006;9(1–2):181–4.

    Article  CAS  PubMed  Google Scholar 

  11. Nybo L, Girard O, Mohr M, Knez W, Voss S, Racinais S. Markers of muscle damage and performance recovery after exercise in the heat. Med Sci Sports Exerc. 2013;45(5):860–8.

    Article  PubMed  Google Scholar 

  12. Rodriguez-Fernandez A, Sanchez-Sanchez J, Ramirez-Campillo R, Rodriguez-Marroyo JA, Villa Vicente JG, Nakamura FY. Effects of short-term in-season break detraining on repeated-sprint ability and intermittent endurance according to initial performance of soccer player. PLoS ONE. 2018;13(8):e0201111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Schimpchen J, Skorski S, Nopp S, Meyer T. Are, “classical” tests of repeated-sprint ability in football externally valid? A new approach to determine in-game sprinting behaviour in elite football players. J Sports Sci. 2016;34(6):519–26.

    Article  PubMed  Google Scholar 

  14. Buchheit M, Mendez-villanueva A, Simpson BM, Bourdon PC. Repeated-sprint sequences during youth soccer matches. Int J Sports Med. 2010;31(10):709–16.

    Article  CAS  PubMed  Google Scholar 

  15. Turner AN, Stewart PF. Repeat sprint ability. Strength Cond J. 2013;35(1):37–41.

    Article  Google Scholar 

  16. Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med. 2005;35(6):501–36.

    Article  PubMed  Google Scholar 

  17. Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625–31.

    Article  PubMed  Google Scholar 

  18. Sheppard JM, Young WB. Agility literature review: classifications, training and testing. J Sport Sci. 2006;24(9):919–32.

    Article  CAS  Google Scholar 

  19. Nygaard Falch H, Guldteig Raedergard H, van den Tillaar R. Effect of different physical training forms on change of direction ability: a systematic review and meta-analysis. Sports Med Open. 2019;5(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brughelli M, Cronin J, Levin G, Chaouachi A. Understanding change of direction ability in sport: a review of resistance training studies. Sports Med. 2008;38(12):1045–63.

    Article  PubMed  Google Scholar 

  21. Bishop DJ, Girard O. Determinants of team-sport performance: implications for altitude training by team-sport athletes. Br J Sports Med. 2013;47(Suppl 1):i17-21.

    Article  PubMed  Google Scholar 

  22. Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability—part II: recommendations for training. Sports Med. 2011;41(9):741–56.

    Article  PubMed  Google Scholar 

  23. Taube W, Leukel C, Gollhofer A. How neurons make us jump: the neural control of stretch-shortening cycle movements. Exerc Sport Sci Rev. 2012;40(2):106–15.

    Article  PubMed  Google Scholar 

  24. Komi PV, Gollhofer A. Stretch reflex can have an important role in force enhancement during SSC-exercise. J Appl Biomech. 1997;13:451–9.

    Article  Google Scholar 

  25. Radnor JM, Oliver JL, Waugh CM, Myer GD, Moore IS, Lloyd RS. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2017;48:57–71.

    Article  PubMed Central  Google Scholar 

  26. Ebben WP, Simenz C, Jensen RL. Evaluation of plyometric intensity using electromyography. J Strength Cond Res. 2008;22(3):861–8.

    Article  PubMed  Google Scholar 

  27. Komi PV. Stretch shortening cycle. In: Komi PV, editor. Strength and power in sport. Oxford: Blackwell Science; 2003.

    Chapter  Google Scholar 

  28. Markovic G, Mikulic P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010;40(10):859–95.

    Article  PubMed  Google Scholar 

  29. McMahon JJ, Comfort P, Pearson S. Lower limb stiffness: effect on performance and training considerations. Strength Cond J. 2012;34(6):94–101.

    Article  Google Scholar 

  30. Grgic J, Schoenfeld BJ, Mikulic P. Effects of plyometric vs. resistance training on skeletal muscle hypertrophy: a review. J Sport Health Sci. 2020. https://doi.org/10.1016/j.jshs.2020.06.010.

  31. Ullrich B, Pelzer T, Pfeiffer M. Neuromuscular effects to 6 weeks of loaded countermovement jum** with traditional and daily undulating periodization. J Strength Cond Res. 2018;32(3):660–74.

    Article  PubMed  Google Scholar 

  32. Cormie P, McGuigan MR, Newton RU. Influence of strength on magnitude and mechanisms of adaptation to power training. Med Sci Sports Exerc. 2010;42(8):1566–81.

    Article  PubMed  Google Scholar 

  33. Malisoux L, Francaux M, Nielens H, Renard P, Lebacq J, Theisen D. Calcium sensitivity of human single muscle fibers following plyometric training. Med Sci Sports Exerc. 2006;38(11):1901–8.

    Article  CAS  PubMed  Google Scholar 

  34. Malisoux L, Francaux M, Nielens H, Theisen D. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol (1985). 2006;100(3):771–9.

    Article  Google Scholar 

  35. Noakes TD, Durandt JJ. Physiological requirements of cricket. J Sports Sci. 2000;18(12):919–29.

    Article  CAS  PubMed  Google Scholar 

  36. Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes—a prospective study. Am J Sports Med. 1999;27(6):699–706.

    Article  CAS  PubMed  Google Scholar 

  37. Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24(6):765–73.

    Article  CAS  PubMed  Google Scholar 

  38. de Villarreal ESS, Requena B, Newton RU. Does plyometric training improve strength performance? A meta-analysis. J Sci Med Sport. 2010;13(5):513–22.

    Article  Google Scholar 

  39. Cormie P, McGuigan MR, Newton RU. Develo** maximal neuromuscular power: part 2 training considerations for improving maximal power production. Sports Med. 2011;41(2):125–46.

    Article  PubMed  Google Scholar 

  40. Ramirez-Campillo R, Meylan CM, Alvarez-Lepin C, Henriquez-Olguin C, Martinez C, Andrade DC, et al. The effects of interday rest on adaptation to 6 weeks of plyometric training in young soccer players. J Strength Cond Res. 2015;29(4):972–9.

    Article  PubMed  Google Scholar 

  41. Faigenbaum AD, McFarland JE, Keiper FB, Tevlin W, Ratamess NA, Kang J, et al. Effects of a short-term plyometric and resistance training program on fitness performance in boys age 12 to 15 years. J Sports Sci Med. 2007;6:519–25.

    PubMed  PubMed Central  Google Scholar 

  42. Neves da Silva VF, Aguiar SDS, Sousa CV, Sotero RDC, Filho JMS, Oliveira I, et al. Effects of short-term plyometric training on physical fitness parameters in female futsal athletes. J Phys Ther Sci. 2017;29(5):783–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lockie RG, Murphy AJ, Callaghan SJ, Jeffriess MD. Effects of sprint and plyometrics training on field sport acceleration technique. J Strength Cond Res. 2014;28(7):1790–801.

    Article  PubMed  Google Scholar 

  44. de Villarreal ES, Requena B, Cronin JB. The effects of plyometric training on sprint performance: a meta-analysis. J Strength Cond Res. 2012;26(2):575–84.

    Article  Google Scholar 

  45. van de Hoef PA, Brauers JJ, van Smeden M, Backx FJG, Brink MS. The effects of lower-extremity plyometric training on soccer-specific outcomes in adult male soccer players: a systematic review and meta-analysis. Int J Sports Physiol Perform. 2019;4:1–15.

    Google Scholar 

  46. Ache-Dias J, Dellagrana RA, Teixeira AS, Dal Pupo J, Moro ARP. Effect of jum** interval training on neuromuscular and physiological parameters: a randomized controlled study. Appl Physiol Nutr Metab. 2016;41(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  47. Pellegrino J, Ruby BC, Dumke CL. Effect of plyometrics on the energy cost of running and mhc and titin isoforms. Med Sci Sports Exerc. 2016;48(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  48. Vercoe J, McGuigan MR. Relationship between strength and power production capacities in trained sprint track cyclists. Kinesiology. 2018;50(Suppl. 1):96–101.

    Google Scholar 

  49. Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol (1985). 2000;89(5):1991–9.

    Article  CAS  Google Scholar 

  50. Yanci J, Castillo D, Iturricastillo A, Ayarra R, Nakamura FY. Effects of two different volume-equated weekly distributed short-term plyometric training programs on futsal players’ physical performance. J Strength Cond Res. 2017;31(7):1787–94.

    Article  PubMed  Google Scholar 

  51. Hammami M, Negra Y, Aouadi R, Shephard RJ, Chelly MS. Effects of an in-season plyometric training program on repeated change of direction and sprint performance in the junior soccer player. J Strength Cond Res. 2016;30(12):3312–20.

    Article  PubMed  Google Scholar 

  52. Negra Y, Chaabene H, Fernandez-Fernandez J, Sammoud S, Bouguezzi R, Prieske O, et al. Short-term plyometric jump training improves repeated-sprint ability in prepuberal male soccer players. J Strength Cond Res. 2020;34:3241–9.

    Article  PubMed  Google Scholar 

  53. Ramirez-Campillo R, Gonzalez-Jurado JA, Martinez C, Nakamura FY, Penailillo L, Meylan CM, et al. Effects of plyometric training and creatine supplementation on maximal-intensity exercise and endurance in female soccer players. J Sci Med Sport. 2016;19(8):682–7.

    Article  PubMed  Google Scholar 

  54. Chaabene H, Negra Y, Moran J, Prieske O, Sammoud S, Ramirez-Campillo R, et al. Plyometric training improves not only measures of linear speed, power, and change-of-direction speed but also repeated sprint ability in female young handball players. J Strength Cond Res. 2019. https://doi.org/10.1519/JSC.0000000000003128.

    Article  Google Scholar 

  55. Ramirez-Campillo R, Alvarez C, Garcia-Hermoso A, Ramirez-Velez R, Gentil P, Asadi A, et al. Methodological characteristics and future directions for plyometric jump training research: a sco** review. Sports Med. 2018;48(5):1059–81.

    Article  PubMed  Google Scholar 

  56. Ramirez-Campillo R, Moran J, Chaabene H, Granacher U, Behm DG, Garcia-Hermoso A, et al. Methodological characteristics and future directions for plyometric jump training research: a sco** review update. Scand J Med Sci Sports. 2020;30(6):983–97.

    Article  PubMed  Google Scholar 

  57. de Villarreal ES, Kellis E, Kraemer WJ, Izquierdo M. Determining variables of plyometric training for improving vertical jump height performance: a meta-analysis. J Strength Cond Res. 2009;23(2):495–506.

    Article  PubMed  Google Scholar 

  58. Asadi A, Arazi H, Young WB, De Villarreal ES. The effects of plyometric training on change-of-direction ability: a meta-analysis. Int J Sports Physiol Perform. 2016;11(5):563–73.

    Article  PubMed  Google Scholar 

  59. Hammami M, Gaamouri N, Aloui G, Shephard RJ, Chelly MS. Effects of combined plyometric and short sprint with change-of-direction training on athletic performance of male U15 handball players. J Strength Cond Res. 2019;33(3):662–75.

    Article  PubMed  Google Scholar 

  60. Rosas F, Ramirez-Campillo R, Martinez C, Caniuqueo A, Canas-Jamet R, McCrudden E, et al. Effects of plyometric training and beta-alanine supplementation on maximal-intensity exercise and endurance in female soccer players. J Hum Kinet. 2017;58(1):99–109.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Higgins JP, Green S, editors. Cochrane handbook for systematic reviews of interventions: The Cochrane Collaboration. Chichester, UK: Wiley; 2008.

  62. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chu D, Myer G. Plyometrics. Champaign: Human Kinetics; 2013.

    Google Scholar 

  64. Moran J, Ramirez-Campillo R, Granacher U. Effects of jum** exercise on muscular power in older adults: a meta-analysis. Sports Med. 2018;48(12):2843–57.

    Article  PubMed  Google Scholar 

  65. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927–54.

    Article  PubMed  Google Scholar 

  66. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38.

    Article  PubMed  Google Scholar 

  67. Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725–41.

    Article  CAS  PubMed  Google Scholar 

  68. Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):37–51.

    Article  PubMed  Google Scholar 

  69. Stojanović E, Ristić V, McMaster DT, Milanović Z. Effect of plyometric training on vertical jump performance in female athletes: a systematic review and meta-analysis. Sports Med. 2017;47(5):975–86.

    Article  PubMed  Google Scholar 

  70. Ramirez-Campillo R, Sanchez-Sanchez J, Romero-Moraleda B, Yanci J, García-Hermoso A, Manuel Clemente F. Effects of plyometric jump training in female soccer player’s vertical jump height: a systematic review with meta-analysis. J Sports Sci. 2020;38:1475–87.

    Article  PubMed  Google Scholar 

  71. Skrede T, Steene-Johannessen J, Anderssen SA, Resaland GK, Ekelund U. The prospective association between objectively measured sedentary time, moderate-to-vigorous physical activity and cardiometabolic risk factors in youth: a systematic review and meta-analysis. Obes Rev. 2019;20(1):55–74.

    Article  CAS  PubMed  Google Scholar 

  72. Garcia-Hermoso A, Ramirez-Campillo R, Izquierdo M. Is muscular fitness associated with future health benefits in children and adolescents? A systematic review and meta-analysis of longitudinal studies. Sports Med. 2019;49(7):1079–94.

    Article  PubMed  Google Scholar 

  73. Deeks JJ, Higgins JP, Altman DG. Analysing data and undertaking meta-analyses. In: Higgins JP, Green S, editors. Cochrane handbook for systematic reviews of interventions: The Cochrane Collaboration. Chichester, UK: Wiley; 2008. p. 243–96.

  74. Kontopantelis E, Springate DA, Reeves D. A re-analysis of the Cochrane library data: the dangers of unobserved heterogeneity in meta-analyses. PLoS ONE. 2013;8(7):e69930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13.

    Article  PubMed  Google Scholar 

  76. Higgins JP, Deeks JJ, Altman DG. Special topics in statistics. In: Higgins JP, Green S, editors. Cochrane handbook for systematic reviews of interventions: The Cochrane Collaboration. Chichester, UK: Wiley; 2008. p. 481–529.

  77. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Assuncao AR, Bottaro M, Cardoso EA, da Silva DPD, Ferraz M, Vieira CA, et al. Effects of a low-volume plyometric training in anaerobic performance of adolescent athletes. J Sports Med Phys Fit. 2018;58(5):570–5.

    Google Scholar 

  79. Cherif M, Said M, Chaatani S, Nejlaoui O, Gomri D, Abdallah A. The effect of a combined high-intensity plyometric and speed training program on the running and jum** ability of male handball players. Asian J Sports Med. 2012;3(1):21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chtara M, Rouissi M, Haddad M, Chtara H, Chaalali A, Owen A, et al. Specific physical trainability in elite young soccer players: efficiency over 6 weeks’ in-season training. Biol Sport. 2017;34(2):137–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fachina R, Martins D, Montagner P, Borin JP, Vancini RL, Andrade MD, et al. Combined plyometric and strength training improves repeated sprint ability and agility in young male basketball players. Gazz Med Ital Arch Sci Med. 2017;176(3):75–84.

    Google Scholar 

  82. Hammami M, Gaamouri N, Aloui G, Shephard RJ, Chelly MS. Effects of a complex strength-training program on athletic performance of junior female handball players. Int J Sports Physiol Perform. 2019;14(2):163–9.

    Article  PubMed  Google Scholar 

  83. Hermassi S, Gabbett T, Ingebrigtsen J, Van Den Tillaar R, Chelly M, Chamari K. Effects of a short-term in-season plyometric training program on repeated-sprint ability, leg power and jump performance of elite handball players. Int J Sports Sci Coach. 2014;9(5):1205–16.

    Article  Google Scholar 

  84. Kubo K, Ishigaki T, Ikebukuro T. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo. Physiol Rep. 2017;5(15):13.

    Article  CAS  Google Scholar 

  85. Behrens M, Mau-Moeller A, Bruhn S. Effect of plyometric training on neural and mechanical properties of the knee extensor muscles. Int J Sports Med. 2014;35(2):101–19.

    CAS  PubMed  Google Scholar 

  86. Newton RU, Kraemer WJ, Häkkinen K. Effects of ballistic training on preseason preparation of elite volleyball players. Med Sci Sport Exer. 1999;31(2):323–30.

    Article  CAS  Google Scholar 

  87. Rodríguez-Rosell D, Pareja-Blanco F, Aagaard P, González-Badillo JJ. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin Physiol Funct Imaging. 2018;38(5):743–62.

    Article  PubMed  Google Scholar 

  88. Taber C, Bellon C, Abbott H, Bingham GE. Roles of maximal strength and rate of force development in maximizing muscular power. Strength Cond J. 2016;38(1):71–8.

    Article  Google Scholar 

  89. Enoka RM. Muscle strength and its development. New perspectives. Sports Med. 1988;6(3):146–68.

    Article  CAS  PubMed  Google Scholar 

  90. Dello Iacono A, Martone D, Milic M, Padulo J. Vertical- vs. horizontal-oriented drop jump training: chronic effects on explosive performances of elite handball players. J Strength Cond Res. 2017;31(4):921–31.

    Article  Google Scholar 

  91. Lockie RG, Murphy AJ, Schultz AB, Knight TJ, de Jonge X. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes. J Strength Cond Res. 2012;26(6):1539–50.

    Article  PubMed  Google Scholar 

  92. Maćkała K, Fostiak M. Acute effects of plyometric intervention—performance improvement and related changes in sprinting gait variability. J Strength Cond Res. 2015;29(7):1956–65.

    Article  PubMed  Google Scholar 

  93. Bobbert MF. Drop jum** as a training method for jum** ability. Sports Med. 1990;9(1):7–22.

    Article  CAS  PubMed  Google Scholar 

  94. Asmussen E, Bonde-Petersen F. Storage of elastic energy in skeletal muscles in man. Acta Physiol Scand. 1974;91(3):385–92.

    Article  CAS  PubMed  Google Scholar 

  95. Girard O, Brocherie F, Morin JB, Millet GP. Neuro-mechanical determinants of repeated treadmill sprints—usefulness of an “hypoxic to normoxic recovery” approach. Front Physiol. 2015;6:260.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Girard O, Brocherie F, Morin JB, Degache F, Millet GP. Comparison of four sections for analyzing running mechanics alterations during repeated treadmill sprints. J Appl Biomech. 2015;31(5):389–95.

    Article  PubMed  Google Scholar 

  97. Girard O, Micallef JP, Millet GP. Changes in spring-mass model characteristics during repeated running sprints. Eur J Appl Physiol. 2011;111(1):125–34.

    Article  PubMed  Google Scholar 

  98. Ramirez-Campillo R, Gallardo F, Henriquez-Olguin C, Meylan CM, Martinez C, Alvarez C, et al. Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. J Strength Cond Res. 2015;29(7):1784–95.

    Article  PubMed  Google Scholar 

  99. Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):3921–30.

    Article  PubMed  Google Scholar 

  100. Ramirez-Campillo R, Alvarez C, García-Pinillos F, Gentil P, Moran J, Pereira LA, et al. Plyometric training in young male soccer players: potential effect of jump height. Pediatr Exerc Sci. 2019;31(3):306–13.

    Article  PubMed  Google Scholar 

  101. Loturco I, Pereira LA, Kobal R, Zanetti V, Kitamura K, Abad CCC, et al. Transference effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players. J Sports Sci. 2015;33(20):2182–91.

    Article  PubMed  Google Scholar 

  102. Loturco I, Tricoli V, Roschel H, Nakamura FY, Cal Abad CC, Kobal R, et al. Transference of traditional versus complex strength and power training to sprint performance. J Hum Kinet. 2014;28(41):265–73.

    Article  Google Scholar 

  103. Yanci J, Los Arcos A, Camara J, Castillo D, García A, Castagna C. Effects of horizontal plyometric training volume on soccer players’ performance. Res Sports Med (Print). 2016;24(4):308–19.

    Article  Google Scholar 

  104. Ramirez-Campillo R, Henriquez-Olguin C, Burgos C, Andrade DC, Zapata D, Martinez C, et al. Effect of progressive volume-based overload during plyometric training on explosive and endurance performance in young soccer players. J Strength Cond Res. 2015;29(7):1884–93.

    Article  PubMed  Google Scholar 

  105. Berryman N, Maurel DB, Bosquet L. Effect of plyometric vs. dynamic weight training on the energy cost of running. J Strength Cond Res. 2010;24(7):1818–25.

    Article  PubMed  Google Scholar 

  106. Garcia-Pinillos F, Lago-Fuentes C, Latorre-Roman PA, Pantoja-Vallejo A, Ramirez-Campillo R. Jump-rope training: improved 3-km time-trial performance in endurance runners via enhanced lower-limb reactivity and foot-arch stiffness. Int J Sports Physiol Perform. 2020;15(7):927–33.

    Article  Google Scholar 

  107. Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:25–63.

    Article  CAS  PubMed  Google Scholar 

  108. Sinnett AM, Berg K, Latin RW, Noble JM. The relationship between field tests of anaerobic power and 10-km run performance. J Strength Cond Res. 2001;15(4):405–12.

    CAS  PubMed  Google Scholar 

  109. Yamamoto LM, Lopez RM, Klau JF, Casa DJ, Kraemer WJ, Maresh CM. The effects of resistance training on endurance distance running performance among highly trained runners: a systematic review. J Strength Cond Res. 2008;22(6):2036–44.

    Article  PubMed  Google Scholar 

  110. Balsalobre-Fernández C, Santos-Concejero J, Grivas GV. Effects of strength training on running economy in highly trained runners: a systematic review with meta-analysis of controlled trials. J Strength Cond Res. 2016;30(8):2361–8.

    Article  PubMed  Google Scholar 

  111. Barnes KR, Kilding AE. Strategies to improve running economy. Sports Med. 2015;45(1):37–56.

    Article  PubMed  Google Scholar 

  112. Brocherie F, Millet GP, Girard O. Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players. Eur J Appl Physiol. 2015;115(5):891–903.

    Article  PubMed  Google Scholar 

  113. Barillas SR, Watkins CM, Wong MA, Dobbs IJ, Archer DC, Munger CN, et al. Repeated plyometric exercise attenuates blood glucose in healthy adults. Int J Exerc Sci. 2017;10(7):1076–84.

    PubMed  PubMed Central  Google Scholar 

  114. Brown GA, Ray MW, Abbey BM, Shaw BS, Shaw I. Oxygen consumption, heart rate, and blood lactate responses to an acute bout of plyometric depth jumps in college-aged men and women. J Strength Cond Res. 2010;24(9):2475–82.

    Article  PubMed  Google Scholar 

  115. Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur J Appl Physiol. 2003;89(1):1–7.

    Article  PubMed  Google Scholar 

  116. Ducrocq GP, Hureau TJ, Meste O, Blain GM. Similar cardioventilatory but greater neuromuscular stimuli with interval drop jump than with interval running. Int J Sports Physiol Perform. 2019;12:1–29.

    Google Scholar 

  117. Bedoya AA, Miltenberger MR, Lopez RM. Plyometric training effects on athletic performance in youth soccer athletes: a systematic review. J Strength Cond Res. 2015;29(8):2351–60.

    Article  PubMed  Google Scholar 

  118. Johnson BA, Salzberg CL, Stevenson DA. A systematic review: plyometric training programs for young children. J Strength Cond Res. 2011;25(9):2623–33.

    PubMed  Google Scholar 

  119. Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332(7549):1080.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Ramirez-Campillo.

Ethics declarations

Funding

No financial support was received for the conduct of this study, or for the preparation or publication of this manuscript.

Conflict of interest

Rodrigo Ramirez-Campillo, Paulo Gentil, Yassine Negra, Jozo Grgic and Oliver Girard declare that they have no conflicts of interest relevant to the content of this review.

Author contributions

The idea for the article was conceived by RR and PG. The literature search and data analysis were performed by RR, PG and YN. RR, PG, YN, JG, and OG drafted and/or critically revised the work. All authors read and approved the final manuscript.

Availability of data and material

All data generated or analysed during this study are included in this published article (Tables 1, 2, 3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez-Campillo, R., Gentil, P., Negra, Y. et al. Effects of Plyometric Jump Training on Repeated Sprint Ability in Athletes: A Systematic Review and Meta-Analysis. Sports Med 51, 2165–2179 (2021). https://doi.org/10.1007/s40279-021-01479-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01479-w

Navigation