Log in

Gadolinium-Based Contrast Agent-Related Toxicities

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

A Correction to this article was published on 15 May 2018

This article has been updated

Abstract

In recent years, gadolinium-based contrast agents have been associated with different types of toxicity. In particular, nephrogenic systemic fibrosis, a progressive sclerotic-myxedematous systemic disease of unknown etiology, is related to gadolinium-based contrast agent administration in patients with kidney dysfunction. More recently, evidence of magnetic resonance signal intensity changes on pre-contrast T1-weighted images after multiple gadolinium-based contrast agent administrations resulted in the hypothesis of gadolinium brain accumulation in patients with normal renal function, subsequently confirmed in pathological samples. However, there is limited current data and further investigations are necessary before drawing definite conclusions on the clinical consequences of gadolinium-based contrast agent accumulation in human tissues and particularly in the brain. Gadolinium-based contrast agent-related toxicity appears connected to molecular stability, which varies together with the pharmacokinetic properties of the compound and depends on the individual characteristics of the subject. During a lifetime, the physiological changes occurring in the human body may influence its interaction with gadolinium-based contrast agents: the integrity and developmental stage of the organs has an effect on the dynamics of gadolinium-based contrast agent distribution and excretion, thus leading to different possible mechanisms of deposition and toxicity. Therefore, the aim of this work is to discuss the pharmacokinetics and pharmacodynamics of gadolinium-based contrast agents, with a special focus on the brain, and to explore potential predominant gadolinium-based contrast agent-related toxicity in two cornerstone periods of the human life cycle: fetal/neonatal and adulthood/aged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 15 May 2018

    The name of the last author (as shown in the author listing on page 229) was incorrectly tagged during the journal production process, and so appears incorrectly in the PubMed record. The name should be indexed in PubMed as.

References

  1. Idée J, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol. 2006;20:563–76.

    Article  PubMed  CAS  Google Scholar 

  2. Hao D, Ai T, Goerner F, et al. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 2012;36:1060–71.

    Article  PubMed  Google Scholar 

  3. Cowper S, Robin H, Steinberg S, Su L, Gupta S, LeBoit P. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356:1000–1.

    Article  PubMed  CAS  Google Scholar 

  4. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834–41.

    Article  PubMed  Google Scholar 

  5. Kanda T, Fukusato T, Matsuda M, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 2015;276:228–32.

    Article  PubMed  Google Scholar 

  6. McDonald R, McDonald J, Kallmes D, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275:772–82.

    Article  PubMed  Google Scholar 

  7. Le Mignon MM, Chambon C, Warrington S, et al. Gd-DOTA: pharmacokinetics and tolerability after intravenous injection into healthy volunteers. Invest Radiol. 1990;25:933–7.

    Article  PubMed  Google Scholar 

  8. Aime S, Caravan P. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging. 2009;30:1259–67.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huckle J, Altun E, Jay M, Semelka R. Gadolinium deposition in humans. Invest Radiol. 2016;51:236–40.

    Article  PubMed  CAS  Google Scholar 

  10. Prybylski J, Maxwell E, Coste Sanchez C, Jay M. Gadolinium deposition in the brain: lessons learned from other metals known to cross the blood–brain barrier. Magn Reson Imaging. 2016;34:1366–72.

    Article  PubMed  CAS  Google Scholar 

  11. Maximova N, Gregori M, Zennaro F, Sonzogni A, Simeone R, Zanon D. Hepatic gadolinium deposition and reversibility after contrast agent-enhanced MR imaging of pediatric hematopoietic stem cell transplant recipients. Radiology. 2016;281:418–26.

    Article  PubMed  Google Scholar 

  12. Birka M, Wentker K, Lusmöller E, et al. Diagnosis of nephrogenic systemic fibrosis by means of elemental bioimaging and speciation analysis. Anal Chem. 2015;87:3321–8.

    Article  PubMed  CAS  Google Scholar 

  13. Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann H. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 °C. Invest Radiol. 2008;43:817–28.

    Article  PubMed  CAS  Google Scholar 

  14. Prybylski J, Semelka R, Jay M. The stability of gadolinium-based contrast agents in human serum: a reanalysis of literature data and association with clinical outcomes. Magn Reson Imaging. 2017;38:145–51.

    Article  PubMed  CAS  Google Scholar 

  15. Puttagunta NR, Gibby WA, Smith GT. Human in vivo comparative study of zinc and copper transmetallation after administration of magnetic resonance imaging contrast agents. Invest Radiol. 1996;31:739–42.

    Article  PubMed  CAS  Google Scholar 

  16. Kimura J, Ishiguchi T, Matsuda J, et al. Human comparative study of zinc and copper excretion via urine after administration of magnetic resonance imaging contrast agents. Radiat Med. 2005;23:322–6.

    PubMed  Google Scholar 

  17. Fretellier N, Poteau N, Factor C, et al. Analytical interference in serum iron determination reveals iron versus gadolinium transmetallation with linear gadolinium-based contrast agents. Invest Radiol. 2014;49:766–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Niendorf HP, Seifert W. Serum iron and serum bilirubin after administration of Gd-DTPA in healthy volunteers. Invest Radiol. 1988;23:275–80.

    Article  Google Scholar 

  19. Swaminathan S. Gadolinium toxicity: iron and ferroportin as central targets. Magn Reson Imaging. 2016;34:1373–6.

    Article  PubMed  CAS  Google Scholar 

  20. Mühler A, Saeed M, Brasch R, Higgins C. Amelioration of cardiodepressive effects of gadopentetate dimeglumine with addition of ionic calcium. Radiology. 1992;184:159–64.

    Article  PubMed  Google Scholar 

  21. Schaer CA, Schoedon G, Imhof A, Kurrer MO, Schaer DJ. Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin. Circ Res. 2006;99:943–50.

    Article  PubMed  CAS  Google Scholar 

  22. esur.org. ESUR guidelines. 2016. http://www.esur.org/esur-guidelines/. Accessed 18 Feb 2018.

  23. ema.europa.eu. European Medicines Agency. 2016. http://www.ema.europa.eu/ema/. Accessed 18 Feb 2018.

  24. Fda.gov. US Food and Drug Administration. 2016. http://www.fda.gov/. Accessed 18 Feb 2018.

  25. Webb JA, Thomsen HS, Morcos SK, et al. The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol. 2005;15:1234–40.

    Article  PubMed  Google Scholar 

  26. Tirada N, Dreizin D, Khati N, Akin E, Zeman R. Imaging pregnant and lactating patients. Radiographics. 2015;35:1751–65.

    Article  PubMed  Google Scholar 

  27. Oh K, Roberts V, Schabel M, Grove K, Woods M, Frias A. Gadolinium chelate contrast material in pregnancy: fetal biodistribution in the nonhuman primate. Radiology. 2015;276:110–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Webb J, Thomsen H. Gadolinium contrast media during pregnancy and lactation. Acta Radiol. 2013;54:599–600.

    Article  PubMed  Google Scholar 

  29. Okuda Y, Sagami F, Tirone P, Morisetti A, Bussi S, Masters R. Reproductive and developmental toxicity study of gadobenate dimeglumine formulation (E7155) (3): study of embryo-fetal toxicity in rabbits by intravenous administration. J Toxicol Sci. 1999;24(Suppl. 1):79–87.

    Article  PubMed  CAS  Google Scholar 

  30. Khairinisa M, Takatsuru Y, Amano I, et al. The effect of perinatal gadolinium-based contrast agents on adult mice behavior. Invest Radiol. 2018;53(2):110–8.

    Article  PubMed  CAS  Google Scholar 

  31. Ray J, Vermeulen M, Bharatha A, Montanera W, Park A. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316:952.

    Article  PubMed  Google Scholar 

  32. Fraum T, Ludwig D, Bashir M, Fowler K. Gadolinium-based contrast agents: a comprehensive risk assessment. J Magn Reson Imaging. 2017;46:338–53.

    Article  PubMed  Google Scholar 

  33. Kubik-Huch R, Gottstein-Aalame N, Frenzel T, et al. Gadopentetate dimeglumine excretion into human breast milk during lactation. Radiology. 2000;216:555–8.

    Article  PubMed  CAS  Google Scholar 

  34. Schmiedl U, Maravilla KR, Gerlach R, Dowling CA. Excretion of gadopentetate dimeglumine in human breast milk. AJR. 1990;154:1305–6.

    Article  PubMed  CAS  Google Scholar 

  35. Rofsky NM, Weinreb JC, Litt AW. Quantitative analysis of gadopentetate dimeglumine excreted in breast milk. J Magn Reson Imaging. 1993;3:131–2.

    Article  PubMed  CAS  Google Scholar 

  36. Roccatagliata L, Vuolo L, Bonzano L, Pichiecchio A, Mancardi G. Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with the secondary progressive subtype. Radiology. 2009;251:503–10.

    Article  PubMed  Google Scholar 

  37. Radbruch A, Weberling LD, Kieslich PJ, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology. 2015;275:783–91.

    Article  PubMed  Google Scholar 

  38. Kanda T, Osawa M, Oba H, et al. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology. 2015;275:803–9.

    Article  PubMed  Google Scholar 

  39. Cao Y, Huang DQ, Shih G, Prince MR. Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR. 2016;206:414–9.

    Article  PubMed  Google Scholar 

  40. Radbruch A, Weberling LD, Kieslich PJ, et al. Intraindividual analysis of signal intensity changes in the dentate nucleus after consecutive serial applications of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol. 2016;51:683–90.

    Article  PubMed  CAS  Google Scholar 

  41. Radbruch A. Are some agents less likely to deposit gadolinium in the brain? Magn Reson Imaging. 2016;34:1351–4.

    Article  PubMed  CAS  Google Scholar 

  42. Radbruch A, Haase R, Kickingereder P, et al. Pediatric brain: no increased signal intensity in the dentate nucleus on unenhanced T1-weighted MR images after consecutive exposure to a macrocyclic gadolinium-based contrast agent. Radiology. 2017;283:828–36.

    Article  PubMed  Google Scholar 

  43. Conte G, Preda L, Cocorocchio E, et al. Signal intensity change on unenhanced T1-weighted images in dentate nucleus and globus pallidus after multiple administrations of gadoxetate disodium: an intraindividual comparative study. Eur Radiol. 2017;27:4372–8.

    Article  PubMed  Google Scholar 

  44. Flood T, Stence N, Maloney J, Mirsky D. Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology. 2017;282:222–8.

    Article  PubMed  Google Scholar 

  45. Miller J, Hu H, Pokorney A, Cornejo P, Towbin R. MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics. 2015;136:e1637–40.

    Article  PubMed  Google Scholar 

  46. Roberts D, Holden K. Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain Dev. 2016;38:331–6.

    Article  PubMed  Google Scholar 

  47. McDonald RJ, McDonald JS, Kallmes DF, et al. Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology. 2017;285:546–54.

    Article  PubMed  Google Scholar 

  48. Rossi Espagnet M, Bernardi B, Pasquini L, Figà-Talamanca L, Tomà P, Napolitano A. Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol. 2017;47:1345–52.

    Article  PubMed  Google Scholar 

  49. Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents: current status. Neuroradiology. 2016;58:433–41.

    Article  PubMed  Google Scholar 

  50. Bjørnerud A, Vatnehol S, Larsson C, Due-Tønnessen P, Hol P, Groote I. Signal enhancement of the dentate nucleus at unenhanced MR imaging after very high cumulative doses of the macrocyclic gadolinium-based contrast agent gadobutrol: an observational study. Radiology. 2017;285:434–44.

    Article  PubMed  Google Scholar 

  51. Tibussek D, Rademacher C, Caspers J, et al. Gadolinium brain deposition after macrocyclic gadolinium administration: a pediatric case-control study. Radiology. 2017;285:223–30.

    Article  PubMed  Google Scholar 

  52. Murata N, Gonzalez-Cuyar LF, Murata K, et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol. 2016;51:447–53.

    Article  PubMed  CAS  Google Scholar 

  53. Wedeking P, Kumar K, Tweedle M. Dose-dependent biodistribution of [153Gd] Gd(acetate)n in mice. Nucl Med Biol. 1993;20:679–91.

    Article  PubMed  CAS  Google Scholar 

  54. Robert P, Violas X, Grand S, et al. Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats. Invest Radiol. 2016;51:73–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Adding L, Bannenberg G, Gustafsson L. Basic experimental studies and clinical aspects of gadolinium salts and chelates. Cardiovasc Drug Rev. 2006;19:41–56.

    Article  Google Scholar 

  56. Frenzel T, Apte C, Jost G, Schöckel L, Lohrke J, Pietsch H. Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats. Invest Radiol. 2017;52:396–404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gianolio E, Bardini P, Arena F, et al. Gadolinium retention in the rat brain: assessment of the amounts of insoluble gadolinium-containing species and intact gadolinium complexes after repeated administration of gadolinium-based contrast agents. Radiology. 2017;285(3):839–49.

    Article  PubMed  Google Scholar 

  58. Iliff J, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid b. Sci Transl Med. 2012;4:147ra111.

  59. Jessen N, Munk A, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40:2583–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Burns E, Dobben G, Kruckeberg TW, Gaetano PK. Blood–brain barrier: morphology, physiology, and effects of contrast media. Adv Neurol. 1981;30:159–65.

    PubMed  CAS  Google Scholar 

  61. Chung MC-M. Structure and function of transferrin. J Chem Inf Model. 1989;53:160.

  62. Chia W-J, Tan FCK, Ong W-Y, Dawe GS. Expression and localization of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Neurochem Int. 2015;87:43–59.

    Article  PubMed  CAS  Google Scholar 

  63. Bressler JP, Cheong JH, Kim Y, Maerten A, Bannon D. Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities. Hum Exp Toxicol. 2007;26:221–9.

    Article  PubMed  CAS  Google Scholar 

  64. **a D, Davis RL, Crawford J, Abraham JL. Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol. 2010;51:1126–36.

    Article  PubMed  Google Scholar 

  65. Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, et al. The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006;14:69–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bakker EN, Bacskai BJ, Arbel-Ornath M, et al. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36:181–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Naganawa S, Nakane T, Kawai H, Taoka T. Lack of contrast enhancement in a giant perivascular space of the basal ganglion on delayed FLAIR images: implications for the glymphatic system. Magn Reson Med Sci. 2017;16:89–90.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jost G, Frenzel T, Lohrke J, Lenhard D, Naganawa S, Pietsch H. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue. Eur Radiol. 2016;27:2877–85.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Öner A, Barutcu B, Aykol Ş, Tali E. Intrathecal contrast-enhanced magnetic resonance imaging-related brain signal changes. Invest Radiol. 2017;52:195–7.

    Article  PubMed  CAS  Google Scholar 

  70. Marckmann P, Skov L, Rossen K, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17:2359–62.

    Article  PubMed  Google Scholar 

  71. Grobner T, Prischl FC. Gadolinium and nephrogenic systemic fibrosis. Kidney Int. 2007;72:260–4.

    Article  PubMed  CAS  Google Scholar 

  72. Thomsen H, Morcos S, Almén T, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2012;23:307–18.

    Article  PubMed  Google Scholar 

  73. Zou Z, Zhang H, Roditi G, Leiner T, Kucharczyk W, Prince M. Nephrogenic systemic fibrosis. JACC Cardiovasc. Imaging. 2011;4:1206–16.

    Google Scholar 

  74. Edward M, Quinn JA, Burden AD, Newton BB, Jardine AG. Effect of different classes of gadolinium-based contrast agents on control and nephrogenic systemic fibrosis-derived fibroblast proliferation. Radiology. 2010;256:735–43.

    Article  PubMed  Google Scholar 

  75. Varani J, DaSilva M, Warner RL, et al. Effects of gadolinium-based magnetic resonance imaging contrast agents on human skin in organ culture and human skin fibroblasts. Invest Radiol. 2009;44:74–81.

    Article  PubMed  CAS  Google Scholar 

  76. Steger-Hartmann T, Raschke M, Riefke B, Pietsch H, Sieber MA, Walter J. The involvement of pro-inflammatory cytokines in nephrogenic systemic fibrosis: a mechanistic hypothesis based on preclinical results from a rat model treated with gadodiamide. Exp Toxicol Pathol. 2009;61:537–52.

    Article  PubMed  CAS  Google Scholar 

  77. Idée JM, Port M, Dencausse A, Lancelot E, Corot C. Involvement of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: an update. Radiol Clin North Am. 2009;47:855–69.

    Article  PubMed  Google Scholar 

  78. High WA, Ayers RA, Chandler J, Zito G, Cowper SE. Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol. 2007;56:21–6.

    Article  PubMed  Google Scholar 

  79. Boyd AS, Zic JA, Abraham JL. Gadolinium deposition in nephrogenic fibrosing dermopathy. J Am Acad Dermatol. 2007;56:27–30.

    Article  PubMed  Google Scholar 

  80. Kribben A, Witzke O, Hillen U, Barkhausen J, Daul AE, Erbel R. Nephrogenic systemic fibrosis: pathogenesis, diagnosis, and therapy. J Am Coll Cardiol. 2009;53:1621–8.

    Article  PubMed  CAS  Google Scholar 

  81. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243:148–57.

    Article  PubMed  Google Scholar 

  82. European Medicines Agency. EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans. 2017. EMA/625317/2017. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/gadolinium_contrast_agents_31/European_Commission_final_decision/WC500240575.pdf. Accessed 18 Feb 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Pasquini.

Ethics declarations

Funding

No sources of funding were received for the preparation of this article.

Conflict of interest

Luca Pasquini, Antonio Napolitano, Emiliano Visconti, Daniela Longo, Andrea Romano, Paolo Tomà, and Maria Camilla Rossi Espagnet have no conflicts of interest directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquini, L., Napolitano, A., Visconti, E. et al. Gadolinium-Based Contrast Agent-Related Toxicities. CNS Drugs 32, 229–240 (2018). https://doi.org/10.1007/s40263-018-0500-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-018-0500-1

Navigation