Log in

Repository Describing an Aging Population to Inform Physiologically Based Pharmacokinetic Models Considering Anatomical, Physiological, and Biological Age-Dependent Changes

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Aging is characterized by anatomical, physiological, and biological changes that can impact drug kinetics. The elderly are often excluded from clinical trials and knowledge about drug kinetics and drug–drug interaction magnitudes is sparse. Physiologically based pharmacokinetic modeling can overcome this clinical limitation but detailed descriptions of the population characteristics are essential to adequately inform models.

Objective

The objective of this study was to develop and verify a population database for aging Caucasians considering anatomical, physiological, and biological system parameters required to inform a physiologically based pharmacokinetic model that included population variability.

Methods

A structured literature search was performed to analyze age-dependent changes of system parameters. All collated data were carefully analyzed, and descriptive mathematical equations were derived.

Results

A total of 362 studies were found of which 318 studies were included in the analysis as they reported rich data for anthropometric parameters and specific organs (e.g., liver). Continuous functions could be derived for most system parameters describing a Caucasian population from 20 to 99 years of age with variability. Areas with sparse data were identified such as tissue composition, but knowledge gaps were filled with plausible qualified assumptions. The developed population was implemented in Matlab® and estimated system parameters from 1000 virtual individuals were in accordance with independent observed data showing the robustness of the developed population.

Conclusions

The developed repository for aging subjects provides a singular specific source for key system parameters needed for physiologically based pharmacokinetic modeling and can in turn be used to investigate drug kinetics and drug–drug interaction magnitudes in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. United Nations. World population ageing. 2015. http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf. Accessed 23 Jan 2018.

  2. World Health Organization. Definition of an older or elderly person. 2010. http://www.who.int/healthinfo/survey/ageingdefnolder/en/index.html. Accessed 23 Feb 2018.

  3. Maher RL, Hanlon J, Hajjar ER. Clinical consequences of polypharmacy in elderly. Expert Opin Drug Saf. 2014;13(1):57–65.

    Article  PubMed  Google Scholar 

  4. Greene M, Steinman MA, McNicholl IR, Valcour V. Polypharmacy, drug–drug interactions, and potentially inappropriate medications in older adults with human immunodeficiency virus infection. J Am Geriatr Soc. 2014;62(3):447–53.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37–43.

    Article  PubMed  Google Scholar 

  6. Singh S, Bajorek B. Defining ‘elderly’in clinical practice guidelines for pharmacotherapy. Pharm Pract. 2014;12(4):489–98.

    Google Scholar 

  7. Watts G. Why the exclusion of older people from clinical research must stop. BMJ. 2012;344:e3445.

    Article  PubMed  Google Scholar 

  8. Dunnill M, Halley W. Some observations on the quantitative anatomy of the kidney. J Pathol. 1973;110(2):113–21.

    Article  PubMed  CAS  Google Scholar 

  9. Hollenberg NK, Adams DF, Solomon HS, Rashid A, Abrams HL, Merrill JP. Senescence and the renal vasculature in normal man. Circ Res. 1974;34(3):309–16.

    Article  PubMed  CAS  Google Scholar 

  10. Cockcroft DW, Gault H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.

    Article  PubMed  CAS  Google Scholar 

  11. Koff R, Garvey A, Burney S, Bell B. Absence of an age effect on sulfobromophthalein retention in healthy men. Gastroenterology. 1973;65(2):300–2.

    Article  PubMed  CAS  Google Scholar 

  12. Marchesini G, Bua V, Brunori A, Bianchi G, Pisi P, Fabbri A, et al. Galactose elimination capacity and liver volume in aging man. Hepatology. 1988;8(5):1079–83.

    Article  PubMed  CAS  Google Scholar 

  13. Wynne HA, Cope LH, Mutch E, Rawlins MD, Woodhouse KW, James OF. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology. 1989;9(2):297–301.

    Article  PubMed  CAS  Google Scholar 

  14. Safar M. Ageing and its effects on the cardiovascular system. Drugs. 1990;39(1):1–8.

    Article  PubMed  Google Scholar 

  15. Thompson CM, Johns DO, Sonawane B, Barton HA, Hattis D, Tardif R, et al. Database for physiologically based pharmacokinetic (PBPK) modeling: physiological data for healthy and health-impaired elderly. J Toxicol Environ Health B Crit Rev. 2009;12(1):1–24.

    Article  PubMed  CAS  Google Scholar 

  16. Schlender J-F, Meyer M, Thelen K, Krauss M, Willmann S, Eissing T, et al. Development of a whole-body physiologically based pharmacokinetic approach to assess the pharmacokinetics of drugs in elderly individuals. Clin Pharmacokinet. 2016;55(12):1573–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. O’Carroll R, Ebmeier K, Dougall N, Murray C, Goodwin G, Hayes P, et al. Regional cerebral blood flow and cognitive function in patients with chronic liver disease. Lancet. 1991;337(8752):1250–3.

    Article  PubMed  Google Scholar 

  18. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5(13):1–10.

    Google Scholar 

  19. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135–59.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Williams L, Leggett R. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas. 1989;10(3):187–217.

    Article  PubMed  CAS  Google Scholar 

  21. DuBois D, DuBois EF. Fifth paper the measurement of the surface area of man. Arch Intern Med. 1915;15(5):868–81.

    Article  CAS  Google Scholar 

  22. Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2003.

  23. European Union. Eurostat—population. 2013. http://ec.europa.eu/eurostat/data/database. Accessed 23 Feb 2017.

  24. Bundesamt für Statistik (Schweiz). Permanent resident population by age,sex and category of citizenship. 2016. https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung.assetdetail.299701.html. Accessed 1 May 2017.

  25. Bedogni G, Pietrobelli A, Heymsfield SB, Borghi A, Manzieri AM, Morini P, et al. Is body mass index a measure of adiposity in elderly women? Obes Res. 2001;9(1):17–20.

    Article  PubMed  CAS  Google Scholar 

  26. Bosy-Westphal A, Mast M, Eichhorn C, Becker C, Kutzner D, Heller M, et al. Validation of air-displacement plethysmography for estimation of body fat mass in healthy elderly subjects. Eur J Nutr. 2003;42(4):207–16.

    Article  PubMed  CAS  Google Scholar 

  27. Brown E, Hopper J Jr, Hodges J Jr, Bradley B, Wennesland R, Yamauchi H. Red cell, plasma, and blood volume in healthy women measured by radiochromium cell-labeling and hematocrit. J Clin Invest. 1962;41(12):2182–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Statistisches Bundesamt der Bundesrepublik Deutschland. Mikrozensus—Fragen zur Gesundheit. Körpermaße der Bevölkerung. 2013. https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustand/Koerpermasse5239003099004.pdf?__blob=publicationFile. Accessed 31 May 2017.

  29. Calloway N, Foley C, Lagerbloom P. Uncertainties in geriatric data. II. Organ size. J Am Geriatr Soc. 1965;13(1):20–8.

    Article  PubMed  CAS  Google Scholar 

  30. Chien S, Usami S, Simmons R, McAllister F, Gregersen M. Blood volume and age: repeated measurements on normal men after 17 years. J Appl Physiol. 1966;21(2):583–8.

    Article  PubMed  CAS  Google Scholar 

  31. Cohn JE, Shock NW. Blood volume studies in middle-aged and elderly males. Am J Med Sci. 1949;217:388–91.

    Article  PubMed  CAS  Google Scholar 

  32. Corish CA, Kennedy NP. Anthropometric measurements from a cross-sectional survey of Irish free-living elderly subjects with smoothed centile curves. Br J Nutr. 2003;89(1):137–45.

    Article  PubMed  CAS  Google Scholar 

  33. De Groot C, Perdigao A, Deurenberg P. Longitudinal changes in anthropometric characteristics of elderly Europeans: SENECA Investigators. Eur J Clin Nutr. 1996;50(Suppl. 2):S9–15.

    PubMed  Google Scholar 

  34. Delarue J, Constans T, Malvy D, Pradignac A, Couet C, Lamisse F. Anthropometric values in an elderly French population. Br J Nutr. 1994;71(2):295–302.

    Article  PubMed  CAS  Google Scholar 

  35. Dey DK, Rothenberg E, Sundh V, Bosaeus I, Steen B. Height and body weight in the elderly. I. A 25-year longitudinal study of a population aged 70 to 95 years. Eur J Clin Nutr. 1999;53(12):905–14.

    Article  PubMed  CAS  Google Scholar 

  36. Dey D, Bosaeus I, Lissner L, Steen B. Body composition estimated by bioelectrical impedance in the Swedish elderly: development of population-based prediction equation and reference values of fat-free mass and body fat for 70-and 75-y olds. Eur J Clin Nutr. 2003;57(8):909–16.

    Article  PubMed  CAS  Google Scholar 

  37. Dey DK, Bosaeus I, Lissner L, Steen B. Changes in body composition and its relation to muscle strength in 75-year-old men and women: a 5-year prospective follow-up study of the NORA cohort in Göteborg. Sweden. Nutrition. 2009;25(6):613–9.

    Article  PubMed  Google Scholar 

  38. Eiben G, Dey D, Rothenberg E, Steen B, Björkelund C, Bengtsson C, et al. Obesity in 70-year-old Swedes: secular changes over 30 years. Int J Obes (Lond). 2005;29(7):810–7.

    Article  CAS  Google Scholar 

  39. Farinatti PT, Soares PP. Cardiac output and oxygen uptake relationship during physical effort in men and women over 60 years old. Eur J Appl Physiol. 2009;107(6):625–31.

  40. Gallagher D, Visser M, De Meersman RE, Sepúlveda D, Baumgartner RN, Pierson RN, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol. 1997;83(1):229–39.

    Article  PubMed  CAS  Google Scholar 

  41. Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, Pi-Sunyer FX, et al. Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Physiol. 1998;275(2):E249–58.

    PubMed  CAS  Google Scholar 

  42. Gallagher D, Allen A, Wang Z, Heymsfield SB, Krasnow N. Smaller organ tissue mass in the elderly fails to explain lower resting metabolic rate. Ann NY Acad Sci. 2000;904(1):449–55.

    Article  PubMed  CAS  Google Scholar 

  43. Gavriilidou N, Pihlsgård M, Elmståhl S. Anthropometric reference data for elderly Swedes and its disease-related pattern. Eur J Clin Nutr. 2015;69(9):1066–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gibson JG, Evans WA. Clinical studies of the blood volume. II. The relation of plasma and total blood volume to venous pressure, blood velocity rate, physical measurements, age and sex in ninety normal humans. J Clin Invest. 1937;16(3):317–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gillette-Guyonnet S, Nourhashemi F, Lauque S, Grandjean H, Vellas B. Body composition and osteoporosis in elderly women. Gerontology. 2000;46(4):189–93.

    Article  PubMed  CAS  Google Scholar 

  46. Gnudi S, Sitta E, Fiumi N. Relationship between body composition and bone mineral density in women with and without osteoporosis: relative contribution of lean and fat mass. J Bone Miner Metab. 2007;25(5):326–32.

    Article  PubMed  Google Scholar 

  47. Henche SA, Torres RR, Pellico LG. An evaluation of patterns of change in total and regional body fat mass in healthy Spanish subjects using dual-energy X-ray absorptiometry (DXA). Eur J Clin Nutr. 2008;62(12):1440–8.

    Article  PubMed  Google Scholar 

  48. Horber FF, Gruber B, Thomi F, Jensen EX, Jaeger P. Effect of sex and age on bone mass, body composition and fuel metabolism in humans. Nutrition. 1997;13(6):524–34.

    Article  PubMed  CAS  Google Scholar 

  49. Launer LJ, Harris T. Weight, height and body mass index distributions in geographically and ethnically diverse samples of older persons. Age Ageing. 1996;25(4):300–6.

    Article  PubMed  CAS  Google Scholar 

  50. Legrand D, Adriaensen W, Vaes B, Matheï C, Wallemacq P, Degryse J. The relationship between grip strength and muscle mass (MM), inflammatory biomarkers and physical performance in community-dwelling very old persons. Arch Gerontol Geriatr. 2013;57(3):345–51.

    Article  PubMed  CAS  Google Scholar 

  51. Molina DK, DiMaio VJ. Normal organ weights in men. Part II. The brain, lungs, liver, spleen, and kidneys. Am J Forensic Med Pathol. 2012;33(4):368–72.

    Article  PubMed  Google Scholar 

  52. Molina DK, DiMaio VJ. Normal organ weights in women. Part II. The brain, lungs, liver, spleen, and kidneys. Am J Forensic Med Pathol. 2015;36(3):182–7.

    Article  PubMed  Google Scholar 

  53. Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR, et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995;26(4):1068–79.

    Article  PubMed  CAS  Google Scholar 

  54. Perissinotto E, Pisent C, Sergi G, Grigoletto F, Enzi G. Anthropometric measurements in the elderly: age and gender differences. Br J Nutr. 2002;87(2):177–86.

    Article  PubMed  CAS  Google Scholar 

  55. Puggaard L, Bjørnsbo KS, Kock K, Lüders K, Thobo-Carlsen B, Lammert O. Age-related decrease in energy expenditure at rest parallels reductions in mass of internal organs. Am J Hum Biol. 2002;14(4):486–93.

    Article  PubMed  Google Scholar 

  56. Ravaglia G, Morini P, Forti P, Maioli F, Boschi F, Bernardi M, et al. Anthropometric characteristics of healthy Italian nonagenarians and centenarians. Br J Nutr. 1997;77(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  57. Ravaglia G, Forti P, Maioli F, Boschi F, Cicognani A, Gasbarrini G. Measurement of body fat in healthy elderly men: a comparison of methods. J Gerontol A Biol Sci Med Sci. 1999;54(2):M70–6.

    Article  PubMed  CAS  Google Scholar 

  58. Rea I, Gillen S, Clarke E. Anthropometric measurements from a cross-sectional survey of community dwelling subjects aged over 90 years of age. Eur J Clin Nutr. 1997;51(2):102–6.

    Article  PubMed  CAS  Google Scholar 

  59. Santana H, Zoico E, Turcato E, Tosoni P, Bissoli L, Olivieri M, et al. Relation between body composition, fat distribution, and lung function in elderly men. Am J Clin Nutr. 2001;73(4):827–31.

    Article  PubMed  CAS  Google Scholar 

  60. Schutz Y, Kyle U, Pichard C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18-98 y. Int J Obes Relat Metab Disord. 2002;26(7):953–60.

    Article  PubMed  CAS  Google Scholar 

  61. Smith HL. The relation of the weight of the heart to the weight of the body and of the weight of the heart to age. Am Heart J. 1928;4(1):79–93.

    Article  Google Scholar 

  62. Svendsen OL, Hassager C, Christiansen C. Age-and menopause-associated variations in body composition and fat distribution in healthy women as measured by dual-energy X-ray absorptiometry. Metabolism. 1995;44(3):369–73.

    Article  PubMed  CAS  Google Scholar 

  63. Tanner J. The construction of normal standards for cardiac output in man. J Clin Invest. 1949;28(3):567–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Tichet J, Goxe D, Sallé A, Berrut G, Ritz P. Prevalence of sarcopenia in the French senior population. J Nutr Health Aging. 2008;12(3):202–6.

    Article  PubMed  CAS  Google Scholar 

  65. Vache C, Rousset P, Gachon P, Gachon A, Morio B, Boulier A, et al. Bioelectrical impedance analysis measurements of total body water and extracellular water in healthy elderly subjects. Int J Obesity. 1998;22(6):537–43.

    Article  CAS  Google Scholar 

  66. Wennesland R, Brown E, Hopper J Jr, Hodges J Jr, Guttentag O, Scott K, et al. Red cell, plasma and blood volume in healthy men measured by radiochromium (Cr51) cell tagging and hematocrit: influence of age, somatotype and habits of physical activity on the variance after regression of volumes to height and weight combined. J Clin Invest. 1959;38(7):1065–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Whimster WF, Macfarlane AJ. Normal lung weights in a white population. Am Rev Respir Dis. 1974;110(4):478–83.

    PubMed  CAS  Google Scholar 

  68. Ylihärsilä H, Kajantie E, Osmond C, Forsén T, Barker DJ, Eriksson JG. Body mass index during childhood and adult body composition in men and women aged 56–70 y. Am J Clin Nutr. 2008;87(6):1769–75.

    Article  PubMed  Google Scholar 

  69. de la Grandmaison GL, Clairand I, Durigon M. Organ weight in 684 adult autopsies: new tables for a Caucasoid population. Forensic Sci Int. 2001;119(2):149–54.

    Article  PubMed  Google Scholar 

  70. Starr I, Donal J, Margolies A, Shaw R, Collins L, Gamble C. Studies of the heart and circulation in disease; estimations of basal cardiac output, metabolism, heart size, and blood pressure in 235 subjects. J Clin Invest. 1934;13(4):561–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Bartali B, Benvenuti E, Corsi AM, Bandinelli S, Russo CR, Di Iorio A, et al. Changes in anthropometric measures in men and women across the life-span: findings from the InCHIANTI study. Soz Präventivmed. 2002;47(5):336–48.

    Article  PubMed  Google Scholar 

  72. Chouker A, Martignoni A, Dugas M, Eisenmenger W, Schauer R, Kaufmann I, et al. Estimation of liver size for liver transplantation: the impact of age and gender. Liver Transpl. 2004;10(5):678–85.

    Article  PubMed  Google Scholar 

  73. Clarys J, Martin A, Drinkwater D. Gross tissue weights in the human body by cadaver dissection. Hum Biol. 1984;56(3):459–73.

    PubMed  CAS  Google Scholar 

  74. Cournand A, Riley R, Breed E, Baldwin ED, Richards D Jr, Lester M, et al. Measurement of cardiac output in man using the technique of catheterization of the right auricle or ventricle. J Clin Invest. 1945;24(1):106–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Davy KP, Seals DR. Total blood volume in healthy young and older men. J Appl Physiol. 1994;76(5):2059–62.

    Article  PubMed  CAS  Google Scholar 

  76. Gillette-Guyonnet S, Nourhashemi F, Andrieu S, Cantet C, Albarède JL, Vellas B, et al. Body composition in French women 75 + years of age: the EPIDOS study. Mech Ageing Dev. 2003;124(3):311–6.

    Article  PubMed  Google Scholar 

  77. Ho C, Beard J, Farrell P, Minson C, Kenney W. Age, fitness, and regional blood flow during exercise in the heat. J Appl Physiol. 1997;82(4):1126–35.

    Article  PubMed  CAS  Google Scholar 

  78. Ishii T, Sternby NH. Pathology of centenarians. I. The cardiovascular system and lungs. J Am Geriatr Soc. 1978;26(3):108–15.

    Article  PubMed  CAS  Google Scholar 

  79. Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol. 2000;89(1):81–8.

    Article  PubMed  CAS  Google Scholar 

  80. Kasiske B, Umen A. The influence of age, sex, race, and body habitus on kidney weight in humans. Arch Pathol Lab Med. 1986;110(1):55–60.

    PubMed  CAS  Google Scholar 

  81. Kemmler W, Teschler M, Goisser S, Bebenek M, von Stengel S, Bollheimer LC, et al. Prevalence of sarcopenia in Germany and the corresponding effect of osteoarthritis in females 70 years and older living in the community: results of the FORMoSA study. Clin Interv Aging. 2015;10:1565–73.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kumar NT, Liestøl K, Løberg EM, Reims HM, Mæhlen J. Postmortem heart weight: relation to body size and effects of cardiovascular disease and cancer. Cardiovasc Pathol. 2014;23(1):5–11.

    Article  PubMed  Google Scholar 

  83. Masanes Toran F, Culla A, Navarro-Gonzalez M, Navarro-Lopez M, Sacanella E, Torres B, et al. Prevalence of sarcopenia in healthy community-dwelling elderly in an urban area of Barcelona (Spain). J Nutr Health Aging. 2012;16(2):184–7.

    Article  Google Scholar 

  84. Mezzani A, Grassi B, Giordano A, Corrà U, Colombo S, Giannuzzi P. Age-related prolongation of phase I of VO2 on-kinetics in healthy humans. Am J Physiol. 2010;299(3):R968–76.

    CAS  Google Scholar 

  85. Nyengaard J, Bendtsen T. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992;232(2):194–201.

    Article  PubMed  CAS  Google Scholar 

  86. Sprogøe-Jakobsen S, Sprogøe-Jakobsen U. The weight of the normal spleen. Forensic Sci Int. 1997;88(3):215–23.

    Article  PubMed  Google Scholar 

  87. Thompson EN, Williams R. Effect of age on liver function with particular reference to bromsulphalein excretion. Gut. 1965;6(3):266–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Meyer W, Peter B, Solth K. The weight of organs in the older age groups (70–92 years) and their relation to age and body weight. Virchows Arch Pathol Anat Physiol Klin Med. 1963;337:17–32.

    Article  PubMed  CAS  Google Scholar 

  89. Carlisle K, Halliwell M, Read A, Wells P. Estimation of total hepatic blood flow by duplex ultrasound. Gut. 1992;33(1):92–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Minson CT, Wladkowski SL, Cardell AF, Pawelczyk JA, Kenney WL. Age alters the cardiovascular response to direct passive heating. J Appl Physiol. 1998;84(4):1323–32.

    Article  PubMed  CAS  Google Scholar 

  91. Nakamura T, Moriyasu F, Ban N, Nishida O, Tamada T, Kawasaki T, et al. Quantitative measurement of abdominal arterial blood flow using image-directed Doppler ultrasonography: superior mesenteric, splenic, and common hepatic arterial blood flow in normal adults. J Clin Ultrasound. 1989;17(4):261–8.

    Article  PubMed  CAS  Google Scholar 

  92. Vanis L, Gentilcore D, Lange K, Gilja OH, Rigda RS, Trahair LG, et al. Effects of variations in intragastric volume on blood pressure and splanchnic blood flow during intraduodenal glucose infusion in healthy older subjects. Am J Physiol. 2012;302(4):R391–9.

    CAS  Google Scholar 

  93. Zoli M, Iervese T, Abbati S, Bianchi G, Marchesini G, Pisi E. Portal blood velocity and flow in aging man. Gerontology. 1989;35(2–3):61–5.

    Article  PubMed  CAS  Google Scholar 

  94. Dunbar SL, Kenney WL. Effects of hormone replacement therapy on hemodynamic responses of postmenopausal women to passive heating. J Appl Physiol. 2000;89(1):97–103.

    Article  PubMed  CAS  Google Scholar 

  95. Robertson D, Waller D, Renwick A, George C. Age-related changes in the pharmacokinetics and pharmacodynamics of nifedipine. Br J Clin Pharmacol. 1988;25(3):297–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Castleden CM, George CF. The effect of ageing on the hepatic clearance of propranolol. Br J Clin Pharmacol. 1979;7(1):49–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Greenblatt DJ, Harmatz JS, Shapiro L, Engelhardt N, Gouthro TA, Shader RI. Sensitivity to triazolam in the elderly. N Engl J Med. 1991;324(24):1691–8.

    Article  PubMed  CAS  Google Scholar 

  98. Tygstrup N, Winkler K, Mellemgaard K, Andreassen M. Determination of the hepatic arterial blood flow and oxygen supply in man by clam** the hepatic artery during surgery. J Clin Invest. 1962;41(3):447–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Howgate E, Rowland Yeo K, Proctor N, Tucker G, Rostami-Hodjegan A. Prediction of in vivo drug clearance from in vitro data. I. Impact of inter-individual variability. Xenobiotica. 2006;36(6):473–97.

    PubMed  CAS  Google Scholar 

  100. Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, et al. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human micro-somal protein and hepatocellularity per gram of liver. Curr Drug Metab. 2007;8(1):33–45.

    Article  PubMed  CAS  Google Scholar 

  101. Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A. Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos. 2008;36(12):2405–9.

    Article  PubMed  CAS  Google Scholar 

  102. Rowland-Yeo K. Abundance of cytochrome P450 in human liver: a meta-analysis. Br J Clin Pharmacol. 2004;57(5):687–8.

    Google Scholar 

  103. Achour B, Barber J, Rostami-Hodjegan A. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: a meta-analysis. Drug Metab Dispos. 2014;42(8):1349–56.

    Article  PubMed  CAS  Google Scholar 

  104. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270(1):414–23.

    PubMed  CAS  Google Scholar 

  105. Achour B, Russell MR, Barber J, Rostami-Hodjegan A. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5′-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics. Drug Metab Dispos. 2014;42(4):500–10.

    Article  PubMed  CAS  Google Scholar 

  106. Parkinson A, Mudra D, Johnson C, Dwyer A, Carroll K. The effects of gender, age, ethnicity, and liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209.

    Article  PubMed  CAS  Google Scholar 

  107. Simon T, Becquemont L, Hamon B, Nouyrigat E, Chodjania Y, Poirier J, et al. Variability of cytochrome P450 1A2 activity over time in young and elderly healthy volunteers. Br J Clin Pharmacol. 2001;52(5):601–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Schwartz JB. Erythromycin breath test results in elderly, very elderly, and frail elderly persons. Clin Pharmacol Ther. 2006;79(5):440–8.

    Article  PubMed  CAS  Google Scholar 

  109. Hunt CM, Westerkam WR, Stave GM. Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol. 1992;44(2):275–83.

    Article  PubMed  CAS  Google Scholar 

  110. Schmucker DL, Woodhouse KW, Wang RK, Wynne H, James OF, McManus M, et al. Effects of age and gender on in vitro properties of human liver microsomal monooxygenases. Clin Pharmacol Ther. 1990;48(4):365–74.

    Article  PubMed  CAS  Google Scholar 

  111. Polasek TM, Patel F, Jensen BP, Sorich MJ, Wiese MD, Doogue MP. Predicted metabolic drug clearance with increasing adult age. Br J Clin Pharmacol. 2013;75(4):1019–28.

    Article  PubMed  CAS  Google Scholar 

  112. Morgan E. Impact of infectious and inflammatory disease on cytochrome P450–mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434–8.

    Article  PubMed  CAS  Google Scholar 

  113. Court MH. Interindividual variability in hepatic drug glucuronidation: studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system. Drug Metab Rev. 2010;42(1):209–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Herd B, Wynne H, Wright P, James O, Woodhouse K. The effect of age on glucuronidation and sulphation of paracetamol by human liver fractions. Br J Clin Pharmacol. 1991;32(6):768–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Villesen HH, Banning A-M, Petersen RH, Weinelt S, Poulsen JB, Hansen SH, et al. Pharmacokinetics of morphine and oxycodone following intravenous administration in elderly patients. Ther Clin Risk Manage. 2007;3(5):961–7.

    CAS  Google Scholar 

  116. Burt HJ, Riedmaier AE, Harwood MD, Crewe HK, Gill KL, Neuhoff S. Abundance of hepatic transporters in Caucasians: a meta-analysis. Drug Metab Dispos. 2016;44(10):1550–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Bauer JH, Brooks CS, Burch RN. Renal function and hemodynamic studies in low-and normal-renin essential hypertension. Arch Intern Med. 1982;142(7):1317–23.

    Article  PubMed  CAS  Google Scholar 

  118. Davies DF, Shock NW. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest. 1950;29(5):496–507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Fliser D, Zeier M, Nowack R, Ritz E. Renal functional reserve in healthy elderly subjects. J Am Soc Nephrol. 1993;3(7):1371–7.

    PubMed  CAS  Google Scholar 

  120. Fliser D, Franek E, Joest M, Block S, Mutschler E, Ritz E. Renal function in the elderly: impact of hypertension and cardiac function. Kidney Int. 1997;51(4):1196–204.

    Article  PubMed  CAS  Google Scholar 

  121. Ghose K, Burch A. Measurement of renal functions by double isotope techniques in elderly patients during tenoxicam therapy. Arch Gerontol Geriatr. 1989;9(2):115–22.

    Article  PubMed  CAS  Google Scholar 

  122. Goldring W, Chasis H, Ranges HA, Smith HW. Relations of effective renal blood flow and glomerular filtration to tubular excretory mass in normal man. J Clin Invest. 1940;19(5):739–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. McDonald RK, Solomon DH, Shock NW. Aging as a factor in the renal hemodynamic changes induced by a standardized pyrogen. J Clin Invest. 1951;30(5):457–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Miller JH, McDonald RK, Shock NW. The renal extraction of p-aminohippurate in the aged individual. J Gerontol. 1951;6(3):213–6.

    Article  PubMed  CAS  Google Scholar 

  125. Fuiano G, Sund S, Mazza G, Rosa M, Caglioti A, Gallo G, et al. Renal hemodynamic response to maximal vasodilating stimulus in healthy older subjects. Kidney Int. 2001;59(3):1052–8.

    Article  PubMed  CAS  Google Scholar 

  126. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function: measured and estimated glomerular filtration rate. N Engl J Med. 2006;354(23):2473–83.

    Article  PubMed  CAS  Google Scholar 

  127. Christensson A, Elmståhl S. Estimation of the age-dependent decline of glomerular filtration rate from formulas based on creatinine and cystatin C in the general elderly population. Nephron Clin Pract. 2011;117(1):c40–50.

    Article  PubMed  CAS  Google Scholar 

  128. Van Den Noortgate NJ, Janssens WH, Delanghe JR, Afschrift MB, Lameire NH. Serum cystatin C concentration compared with other markers of glomerular filtration rate in the old old. J Am Geriatr Soc. 2002;50(7):1278–82.

    Article  Google Scholar 

  129. DeSanto N, Anastasio P, Coppola S, Barba G, Jadanza A, Capasso G. Age-related changes in renal reserve and renal tubular function in healthy humans. Child Nephrol Urol. 1991;11(1):33–40.

    PubMed  CAS  Google Scholar 

  130. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130(6):461–70.

    Article  PubMed  CAS  Google Scholar 

  131. Musso CG, Oreopoulos DG. Aging and physiological changes of the kidneys including changes in glomerular filtration rate. Nephron Physiol. 2011;119(Suppl. 1):1–5.

    Article  CAS  Google Scholar 

  132. Zoico E, Di Francesco V, Guralnik J, Mazzali G, Bortolani A, Guariento S, et al. Physical disability and muscular strength in relation to obesity and different body composition indexes in a sample of healthy elderly women. Int J Obes Relat Metab Disord. 2004;28(2):234–41.

    Article  PubMed  CAS  Google Scholar 

  133. Lesser GT, Deutsch S. Measurement of adipose tissue blood flow and perfusion in man by uptake of 85Kr. J Appl Physiol. 1967;23(5):621–30.

    Article  PubMed  CAS  Google Scholar 

  134. Andersson J, Karpe F, Sjöström L-G, Riklund K, Söderberg S, Olsson T. Association of adipose tissue blood flow with fat depot sizes and adipokines in women. Int J Obes (Lond). 2012;36(6):783–9.

    Article  CAS  Google Scholar 

  135. Proctor DN, Newcomer SC, Koch DW, Le KU, MacLean DA, Leuenberger UA. Leg blood flow during submaximal cycle ergometry is not reduced in healthy older normally active men. J Appl Physiol. 2003;94(5):1859–69.

    Article  PubMed  Google Scholar 

  136. Amery A, Bossaert H, Verstraete M. Muscle blood flow in normal and hypertensive subjects: influence of age, exercise, and body position. Am Heart J. 1969;78(2):211–6.

    Article  PubMed  CAS  Google Scholar 

  137. Johnson JM, Brengelmann GL, Rowell LB. Interactions between local and reflex influences on human forearm skin blood flow. J Appl Physiol. 1976;41(6):826–31.

    Article  PubMed  CAS  Google Scholar 

  138. Proctor DN, Koch DW, Newcomer SC, Le KU, Leuenberger UA. Impaired leg vasodilation during dynamic exercise in healthy older women. J Appl Physiol. 2003;95(5):1963–70.

    Article  PubMed  Google Scholar 

  139. Spann W, Dustmann H. Weight of the human brain and its dependence on age, body length, cause of death and occupation. Dtsch Z Gesamte Gerichtl Med. 1964;56(5):299–317.

    Google Scholar 

  140. Bertsch K, Hagemann D, Hermes M, Walter C, Khan R, Naumann E. Resting cerebral blood flow, attention, and aging. Brain Res. 2009;1267:77–88.

    Article  PubMed  CAS  Google Scholar 

  141. Chen JJ, Rosas HD, Salat DH. Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage. 2011;55(2):468–78.

    Article  PubMed  Google Scholar 

  142. Davis SM, Ackerman RH, Correia JA, Alpert NM, Chang J, Buonanno F, et al. Cerebral blood flow and cerebrovascular CO2 reactivity in stroke-age normal controls. Neurology. 1983;33(4):391–9.

    Article  PubMed  CAS  Google Scholar 

  143. Devous M, Stokely E, Chehabi H, Bonte F. Normal distribution of regional cerebral blood flow measured by dynamic single-photon emission tomography. J Cereb Blood Flow Metab. 1986;6(1):95–104.

    Article  PubMed  Google Scholar 

  144. Hagstadius S, Risberg J. Regional cerebral blood flow characteristics and variations with age in resting normal subjects. Brain Cogn. 1989;10(1):28–43.

    Article  PubMed  CAS  Google Scholar 

  145. Leenders K, Perani D, Lammertsma A, Heather J, Buckingham P, Jones T, et al. Cerebral blood flow, blood volume and oxygen utilization. Brain. 1990;113(1):27–47.

    Article  PubMed  Google Scholar 

  146. Lu H, Xu F, Rodrigue KM, Kennedy KM, Cheng Y, Flicker B, et al. Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb Cortex. 2011;21(6):1426–34.

    Article  PubMed  Google Scholar 

  147. Martin AJ, Friston KJ, Colebatch JG, Frackowiak RS. Decreases in regional cerebral blood flow with normal aging. J Cereb Blood Flow Metab. 1991;11(4):684–9.

    Article  PubMed  CAS  Google Scholar 

  148. Parkes LM, Rashid W, Chard DT, Tofts PS. Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med. 2004;51(4):736–43.

    Article  PubMed  Google Scholar 

  149. Scheinberg P, Blackburn I, Rich M, Saslaw M. Effects of aging on cerebral circulation and metabolism. AMA Arch Neurol Psychiatry. 1953;70(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  150. Shaw TG, Mortel KF, Meyer JS, Rogers RL, Hardenberg J, Cutaia MM. Cerebral blood flow changes in benign aging and cerebrovascular disease. Neurology. 1984;34(7):855–62.

    Article  PubMed  CAS  Google Scholar 

  151. Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ. Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age-and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med. 2007;58(6):1232–41.

    Article  PubMed  Google Scholar 

  152. Molina DK, DiMaio VJ. Normal organ weights in men. Part I. The heart. Am J Forensic Med Pathol. 2012;33(4):362–7.

    Article  PubMed  Google Scholar 

  153. Molina DK, DiMaio VJ. Normal organ weights in women. Part I. The heart. Am J Forensic Med Pathol. 2015;36(3):176–81.

    Article  PubMed  Google Scholar 

  154. Baliga RR, Rosen SD, Camici PG, Kooner JS. Regional myocardial blood flow redistribution as a cause of postprandial angina pectoris. Circulation. 1998;97(12):1144–9.

    Article  PubMed  CAS  Google Scholar 

  155. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol. 1989;14(3):639–52.

    Article  PubMed  CAS  Google Scholar 

  156. Chan SY, Brunken RC, Czernin J, Porenta G, Kuhle W, Krivokapich J, et al. Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men. J Am Coll Cardiol. 1992;20(4):979–85.

    Article  PubMed  CAS  Google Scholar 

  157. Duvernoy CS, Meyer C, Seifert-Klauss V, Dayanikli F, Matsunari I, Rattenhuber J, et al. Gender differences in myocardial blood flow dynamics: lipid profile and hemodynamic effects. J Am Coll Cardiol. 1999;33(2):463–70.

    Article  PubMed  CAS  Google Scholar 

  158. Leight L, Defazio V, Talmers FN, Regan TJ, Hellems HK. Coronary blood flow, myocardial oxygen consumption, and myocardial metabolism in normal and hyperthyroid human subjects. Circulation. 1956;14(1):90–9.

    Article  PubMed  CAS  Google Scholar 

  159. Senneff MJ, Geltman EM, Bergmann SR. Noninvasive delineation of the effects of moderate aging on myocardial perfusion. J Nucl Med. 1991;32(11):2037–42.

    PubMed  CAS  Google Scholar 

  160. Brandfonbrener M, Landowne M, Shock NW. Changes in cardiac output with age. Circulation. 1955;12(4):557–66.

    Article  PubMed  CAS  Google Scholar 

  161. Lewis WH. Changes with age in the cardiac output in adult men. Am J Physiol. 1938;121(2):517–27.

    Article  CAS  Google Scholar 

  162. Smith RH. Normal blood volumes in men and women over sixty years of age as determined by a modified Cr51 method. Anesthesiology. 1958;19(6):752–6.

    Article  PubMed  CAS  Google Scholar 

  163. Smith WW, Wikler NS, Fox AC. Hemodynamic studies of patients with myocardial infarction. Circulation. 1954;9(3):352–62.

    Article  PubMed  CAS  Google Scholar 

  164. Tietz NW, Shuey DF, Wekstein DR. Laboratory values in fit aging individuals: sexagenarians through centenarians. Clin Chem. 1992;38(6):1167–85.

    PubMed  CAS  Google Scholar 

  165. Zauber NP, Zauber AG. Hematologic data of healthy very old people. JAMA. 1987;257(16):2181–4.

    Article  PubMed  CAS  Google Scholar 

  166. Timiras ML, Brownstein H. Prevalence of anemia and correlation of hemoglobin with age in a geriatric screening clinic population. J Am Geriatr Soc. 1987;35(7):639–43.

    Article  PubMed  CAS  Google Scholar 

  167. Sklaroff D. Isotopic determination of blood volume in the normal aged. Am J Roentgenol Radium Ther Nucl Med. 1956;75:1082–3.

    PubMed  CAS  Google Scholar 

  168. Jernigan JA, Gudat JC, Blake JL, Bowen L, Lezotte DC. Reference values for blood findings in relatively fit elderly persons. J Am Geriatr Soc. 1980;28(7):308–14.

    Article  PubMed  CAS  Google Scholar 

  169. Veering BT, Burm A, Souverijn J, Serree J, Spierdijk J. The effect of age on serum concentrations of albumin and alpha 1-acid glycoprotein. Br J Clin Pharmacol. 1990;29(2):201–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Routledge P, Stargel W, Kitchell B, Barchowsky A, Shand D. Sex-related differences in the plasma protein binding of lignocaine and diazepam. Br J Clin Pharmacol. 1981;11(3):245–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Paxton J, Briant R. Alpha 1-acid glycoprotein concentrations and propranolol binding in elderly patients with acute illness. Br J Clin Pharmacol. 1984;18(5):806–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Denko CW, Gabriel P. Age and sex related levels of albumin, ceruloplasmin, alpha 1 antitrypsin, alpha 1 acid glycoprotein, and transferrin. Ann Clin Lab Sci. 1981;11(1):63–8.

    PubMed  CAS  Google Scholar 

  173. Blain P, Mucklow J, Rawlins M, Roberts D, Routledge P, Shand D. Determinants of plasma alpha 1-acid glycoprotein (AAG) concentrations in health. Br J Clin Pharmacol. 1985;20(5):500–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Campion EW, Delabry LO, Glynn RJ. The effect of age on serum albumin in healthy males: report from the Normative Aging Study. J Gerontol. 1988;43(1):M18–20.

    Article  PubMed  CAS  Google Scholar 

  175. Fu A, Nair KS. Age effect on fibrinogen and albumin synthesis in humans. Am J Physiol. 1998;275(6):E1023–30.

    PubMed  CAS  Google Scholar 

  176. Gardner M, Scott R. Age-and sex-related reference ranges for eight plasma constituents derived from randomly selected adults in a Scottish new town. J Clin Pathol. 1980;33(4):380–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Garry PJ, Hunt WC, Van der Jagt DJ, Rhyne RL. Clinical chemistry reference intervals for healthy elderly subjects. Am J Clin Nutr. 1989;50(5):1219–30.

    Article  PubMed  CAS  Google Scholar 

  178. Gersovitz M, Munro HN, Udall J, Young VR. Albumin synthesis in young and elderly subjects using a new stable isotope methodology: response to level of protein intake. Metabolism. 1980;29(11):1075–86.

    Article  PubMed  CAS  Google Scholar 

  179. Pickart L. Increased ratio of plasma free fatty acids to albumin during normal aging and in patients with coronary heart disease. Atherosclerosis. 1983;46(1):21–8.

    Article  PubMed  CAS  Google Scholar 

  180. Reed A, Cannon D, Winkelman J, Bhasin Y, Henry R, Pileggi V. Estimation of normal ranges from a controlled sample survey. I. Sex- and age-related influence on the SMA 12/60 screening group of tests. Clin Chem. 1972;18(1):57–66.

    PubMed  CAS  Google Scholar 

  181. Wallace S, Whiting B. Factors affecting drug binding in plasma of elderly patients. Br J Clin Pharmacol. 1976;3(2):327–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Boddy K, King PC, Hume R, Weyers E. The relation of total body potassium to height, weight, and age in normal adults. J Clin Pathol. 1972;25(6):512–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Bruce A, Andersson M, Arvidsson B, Isaksson B. Body composition: prediction of normal body potassium, body water and body fat in adults on the basis of body height, body weight and age. Scand J Clin Lab Invest. 1980;40(5):461–73.

    Article  PubMed  CAS  Google Scholar 

  184. Cornish B, Ward L, Thomas B, Jebb S, Elia M. Evaluation of multiple frequency bioelectrical impedance and Cole–Cole analysis for the assessment of body water volumes in healthy humans. Eur J Clin Nutr. 1996;50(3):159–64.

    PubMed  CAS  Google Scholar 

  185. Fülöp T, Worum I, Csongor J, Foris G, Leövey A. Body composition in elderly people. Gerontology. 1985;31(1):6–14.

    Article  PubMed  Google Scholar 

  186. Hume R, Weyers E. Relationship between total body water and surface area in normal and obese subjects. J Clin Pathol. 1971;24(3):234–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Schoeller DA. Changes in total body water with age. Am J Clin Nutr. 1989;50(5):1176–81.

    Article  PubMed  CAS  Google Scholar 

  188. St-Onge M-P, Wang Z, Horlick M, Wang J, Heymsfield SB. Dual-energy X-ray absorptiometry lean soft tissue hydration: independent contributions of intra-and extracellular water. Am J Physiol. 2004;287(5):E842–7.

    CAS  Google Scholar 

  189. Steen B. Body composition and aging. Nutr Rev. 1988;46(2):45–51.

    Article  PubMed  CAS  Google Scholar 

  190. Chumlea WC, Guo SS, Zeller CM, Reo NV, Baumgartner RN, Garry PJ, et al. Total body water reference values and prediction equations for adults. Kidney Int. 2001;59(6):2250–8.

    Article  PubMed  CAS  Google Scholar 

  191. Gill KL, Gardner I, Li L, Jamei M. A bottom-up whole-body physiologically based pharmacokinetic model to mechanistically predict tissue distribution and the rate of subcutaneous absorption of therapeutic proteins. AAPS J. 2016;18(1):156–70.

    Article  PubMed  CAS  Google Scholar 

  192. Snyder W, Cook M, Nasset E, Karhausen L, Howells GP, Tipton I. Report of the task group on reference man. Oxford: Pergamon Press Ltd; 1975.

  193. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP. 2002;32(3):1–277.

    Article  Google Scholar 

  194. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res. 1990;7(7):756–61.

    Article  PubMed  CAS  Google Scholar 

  195. Russell TL, Berardi RR, Barnett JL, Dermentzoglou LC, Jarvenpaa KM, Schmaltz SP, et al. Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women. Pharm Res. 1993;10(2):187–96.

    Article  PubMed  CAS  Google Scholar 

  196. Fallingborg J, Christensen L, Ingeman-Nielsen M, Jacobsen B, Abildgaard K, Rasmussen H. pH-profile and regional transit times of the normal gut measured by a radiotelemetry device. Aliment Pharmacol Ther. 1989;3(6):605–14.

    Article  PubMed  CAS  Google Scholar 

  197. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Morihara M, Aoyagi N, Kaniwa N, Kojima S, Ogata H. Assessment of gastric acidity of Japanese subjects over the last 15 years. Biol Pharm Bull. 2001;24(3):313–5.

    Article  PubMed  CAS  Google Scholar 

  199. Evans MA, Triggs EJ, Cheung M, Broe GA, Creasey H. Gastric emptying rate in the elderly: implications for drug therapy. J Am Geriatr Soc. 1981;29(5):201–5.

    Article  PubMed  CAS  Google Scholar 

  200. Horowitz M, Maddern GJ, Chatterton BE, Collins PJ, Harding PE, Shearman DJ. Changes in gastric emptying rates with age. Clin Sci. 1984;67(2):213–8.

    Article  CAS  Google Scholar 

  201. Gainsborough N, Maskrey V, Nelson M, Keating J, Sherwood R, Jackson S, et al. The association of age with gastric emptying. Age Ageing. 1993;22(1):37–40.

    Article  PubMed  CAS  Google Scholar 

  202. Madsen JL. Effects of gender, age, and body mass index on gastrointestinal transit times. Digest Dis Sci. 1992;37(10):1548–53.

    Article  PubMed  CAS  Google Scholar 

  203. Graff J, Brinch K, Madsen JL. Gastrointestinal mean transit times in young and middle-aged healthy subjects. Clin Physiol. 2001;21(2):253–9.

    Article  PubMed  CAS  Google Scholar 

  204. Kupfer R, Heppell M, Haggith J, Bateman D. Gastric emptying and small-bowel transit rate in the elderly. J Am Geriatr Soc. 1985;33(5):340–3.

    Article  PubMed  CAS  Google Scholar 

  205. Chaw C, Yazaki E, Evans D. The effect of pH change on the gastric emptying of liquids measured by electrical impedance tomography and pH-sensitive radiotelemetry capsule. Int J Pharm. 2001;227(1):167–75.

    Article  PubMed  CAS  Google Scholar 

  206. Moore JG, Tweedy C, Christian PE, Datz FL. Effect of age on gastric emptying of liquid-solid meals in man. Digest Dis Sci. 1983;28(4):340–4.

    Article  PubMed  CAS  Google Scholar 

  207. Goo R, Moore J, Greenberg E, Alazraki N. Circadian variation in gastric emptying of meals in humans. Gastroenterology. 1987;93(3):515–8.

    Article  PubMed  CAS  Google Scholar 

  208. Henderson JM, Heymsfield SB, Horowitz J, Kutner MH. Measurement of liver and spleen volume by computed tomography: assessment of reproducibility and changes found following a selective distal splenorenal shunt. Radiology. 1981;141(2):525–7.

    Article  PubMed  CAS  Google Scholar 

  209. Fischer M, Fadda HM. The effect of sex and age on small intestinal transit times in humans. J Pharm Sci. 2016;105(2):682–6.

    Article  PubMed  CAS  Google Scholar 

  210. Husebye E, Engedal K. The patterns of motility are maintained in the human small intestine throughout the process of aging. Scand J Gastroenterol. 1992;27(5):397–404.

    Article  PubMed  CAS  Google Scholar 

  211. Bender AD. Effect of age on intestinal absorption: implications for drug absorption in the elderly. J Am Geriatr Soc. 1968;16(12):1331–9.

    Article  PubMed  CAS  Google Scholar 

  212. Warren P, Pepperman M, Montgomery R. Age changes in small-intestinal mucosa. Lancet. 1978;312(8094):849–50.

    Article  Google Scholar 

  213. Saltzman JR, Kowdley KV, Perrone G, Russell RM. Changes in small-intestine permeability with aging. J Am Geriatr Soc. 1995;43(2):160–4.

    Article  PubMed  CAS  Google Scholar 

  214. Valentini L, Ramminger S, Haas V, Postrach E, Werich M, Fischer A, et al. Small intestinal permeability in older adults. Physiol Rep. 2014;2(4):1–10.

    Article  CAS  Google Scholar 

  215. Barter ZE, Tucker GT, Rowland-Yeo K. Differences in cytochrome p450-mediated pharmacokinetics between chinese and caucasian populations predicted by mechanistic physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2013;52(12):1085–100.

    Article  PubMed  CAS  Google Scholar 

  216. Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of ‘bottom-up’vs ‘top-down’recognition of covariates. Drug Metab Pharmacokinet. 2009;24(1):53–75.

    Article  PubMed  CAS  Google Scholar 

  217. Abduljalil K, Jamei M, Rostami-Hodjegan A, Johnson TN. Changes in individual drug-independent system parameters during virtual paediatric pharmacokinetic trials: introducing time-varying physiology into a paediatric PBPK model. AAPS J. 2014;16(3):568–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Ludin H. Radiologic estimation of kidney weight. Acta Radiol Diagn (Stockh). 1967;6(6):561–74.

    Article  PubMed  CAS  Google Scholar 

  219. McLachlan M, Wasserman P. Changes in sizes and distensibility of the aging kidney. Br J Radiol. 1981;54(642):488–91.

    Article  PubMed  CAS  Google Scholar 

  220. Centers for Disease Control and Prevention. HIV among people aged 50 and over. 2018. https://www.cdc.gov/hiv/group/age/olderamericans/index.html. Accessed 26 Feb 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Stader.

Ethics declarations

Funding

This study was supported by the Swiss National Foundation (Grant No. 166204), the OPO Foundation, and the Isaac Dreyfus Foundation.

Conflict of interest

Felix Stader, Marco Siccardi, Manuel Battegay, Hannah Kinvig, Melissa A. Penny, and Catia Marzolini have no conflicts of interest directly relevant to the contents of this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stader, F., Siccardi, M., Battegay, M. et al. Repository Describing an Aging Population to Inform Physiologically Based Pharmacokinetic Models Considering Anatomical, Physiological, and Biological Age-Dependent Changes. Clin Pharmacokinet 58, 483–501 (2019). https://doi.org/10.1007/s40262-018-0709-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-018-0709-7

Navigation