Log in

Evaluation and Optimisation of Current Milrinone Prescribing for the Treatment and Prevention of Low Cardiac Output Syndrome in Paediatric Patients After Open Heart Surgery Using a Physiology-Based Pharmacokinetic Drug–Disease Model

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Milrinone is the drug of choice for the treatment and prevention of low cardiac output syndrome (LCOS) in paediatric patients after open heart surgery across Europe. Discrepancies, however, among prescribing guidance, clinical studies and practice pattern require clarification to ensure safe and effective prescribing. However, the clearance prediction equations derived from classical pharmacokinetic modelling provide limited support as they have recently failed a clinical practice evaluation. Therefore, the objective of this study was to evaluate current milrinone dosing using physiology-based pharmacokinetic (PBPK) modelling and simulation to complement the existing pharmacokinetic knowledge and propose optimised dosing regimens as a basis for improving the standard of care for paediatric patients.

Methods

A PBPK drug–disease model using a population approach was developed in three steps from healthy young adults to adult patients and paediatric patients with and without LCOS after open heart surgery. Pre- and postoperative organ function values from adult and paediatric patients were collected from literature and integrated into a disease model as factorial changes from the reference values in healthy adults aged 20–40 years. The disease model was combined with the PBPK drug model and evaluated against existing pharmacokinetic data. Model robustness was assessed by parametric sensitivity analysis. In the next step, virtual patient populations were created, each with 1,000 subjects reflecting the average adult and paediatric patient characteristics with regard to age, sex, bodyweight and height. They were integrated into the PBPK drug–disease model to evaluate the effectiveness of current milrinone dosing in achieving the therapeutic target range of 100–300 ng/mL milrinone in plasma. Optimised dosing regimens were subsequently developed.

Results

The pharmacokinetics of milrinone in healthy young adults as well as adult and paediatric patients were accurately described with an average fold error of 1.1 ± 0.1 (mean ± standard deviation) and mean relative deviation of 1.5 ± 0.3 as measures of bias and precision, respectively. Normalised maximum sensitivity coefficients for model input parameters ranged from −0.84 to 0.71, which indicated model robustness. The evaluation of milrinone dosing across different paediatric age groups showed a non-linear age dependence of total plasma clearance and exposure differences of a factor 1.4 between patients with and without LCOS for a fixed dosing regimen. None of the currently used dosing regimens for milrinone achieved the therapeutic target range across all paediatric age groups and adult patients, so optimised dosing regimens were developed that considered the age-dependent and pathophysiological differences.

Conclusion

The PBPK drug–disease model for milrinone in paediatric patients with and without LCOS after open heart surgery highlights that age, disease and surgery differently impact the pharmacokinetics of milrinone, and that current milrinone dosing for LCOS is suboptimal to maintain the therapeutic target range across the entire paediatric age range. Thus, optimised dosing strategies are proposed to ensure safe and effective prescribing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma M, Gauvreau K, Allan CK, et al. Causes of death after congenital heart surgery. Ann Thorac Surg. 2007;83:1438–45.

    PubMed  Google Scholar 

  2. Shi S, Zhao Z, Liu X, et al. Perioperative risk factors for prolonged mechanical ventilation following cardiac surgery in neonates and young infants. Chest. 2008;134:768–74.

    PubMed  Google Scholar 

  3. Vogt W, Läer S. Treatment for paediatric low cardiac output syndrome: results from the European EuLoCOS-Paed survey. Arch Dis Child. 2011;96:1180–6.

    PubMed  Google Scholar 

  4. Vogt W, Läer S. Prevention for pediatric low cardiac output syndrome: results from the European survey EuLoCOS-Paed. Paediatr Anaesth. 2011;12:1176–84.

    Google Scholar 

  5. Vogt W, Läer S. Drug use patterns for the prevention of paediatric low cardiac output syndrome in Europe. Intensive Care Med. 2011;37:1390–1.

    PubMed Central  PubMed  Google Scholar 

  6. Milrinone: Public Assessment Report for paediatric studies submitted in accordance with Article 45 of Regulation (EC) No1901/2006, as amended (2011). http://www.hma.eu/fileadmin/dateien/Human_Medicines/CMD_h_/Paediatric_Regulation/Assessment_Reports/Article_45_work-sharing/Milrinone-_2011_06_Art.45PaedPdAR.pdf. Accessed 9 Jun 2013.

  7. Bailey JM, Hoffman TM, Wessel DL, et al. A population pharmacokinetic analysis of milrinone in pediatric patients after cardiac surgery. J Pharmacokinet Pharmacodyn. 2004;31:43–59.

    CAS  PubMed  Google Scholar 

  8. Bailey JM, Miller BE, Lu W, et al. The pharmacokinetics of milrinone in pediatric patients after cardiac surgery. Anesthesiology. 1999;90:1012–8.

    CAS  PubMed  Google Scholar 

  9. Ramamoorthy C, Anderson GD, Williams GD, et al. Pharmacokinetics and side effects of milrinone in infants and children after open heart surgery. Anesth Analg. 1998;86:283–9.

    CAS  PubMed  Google Scholar 

  10. Garcia Guerra G, Senthilselvan A, Kutsogiannis DJ, et al. Safe administration of milrinone. Pediatr Crit Care Med. 2011;12:A11–A12.

    Google Scholar 

  11. Sanofi aventis. Summary of Product Characteristics for Primacor 1 mg/ml solution for injection (INN: Milrinone).http://www.medicines.org.uk/EMC/medicine/6984/SPC/Primacor+1mg+ml+Solution+for+Injection/. Accessed 9 Jul 2012.

  12. Hoffman TM, Wernovsky G, Atz AM, et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003;107:996–1002.

    CAS  PubMed  Google Scholar 

  13. Edginton AN, Willmann S. Physiology-based simulations of a pathological condition: prediction of pharmacokinetics in patients with liver cirrhosis. Clin Pharmacokinet. 2008;47:743–52.

    PubMed  Google Scholar 

  14. Johnson TN, Boussery K, Rowland-Yeo K, et al. A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet. 2010;49:189–206.

    CAS  PubMed  Google Scholar 

  15. Yeo KR, Aarabi M, Jamei M, et al. Modelling and predicting drug pharmacokinetics in patients with renal impairment. Expert Opin Clin Pharmacol. 2011;4:261–74.

    Google Scholar 

  16. Zhao P, de Vieira MLT, Grillo JA, et al. Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. J Clin Pharmacol. 2012;52:91S–108S.

    CAS  PubMed  Google Scholar 

  17. Björkman S, Wada DR, Berling BM, et al. Prediction of the disposition of midazolam in surgical patients by a physiologically based pharmacokinetic model. J Pharm Sci. 2001;90:1226–41.

    PubMed  Google Scholar 

  18. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45:931–56.

    CAS  PubMed  Google Scholar 

  19. Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45:1013–34.

    CAS  PubMed  Google Scholar 

  20. Parrott N, Davies B, Hoffmann G, et al. Development of a physiologically based model for oseltamivir and simulation of pharmacokinetics in neonates and infants. Clin Pharmacokinet. 2011;50:613–23.

    CAS  PubMed  Google Scholar 

  21. Björkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59:691–704.

    PubMed  Google Scholar 

  22. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51:45–73.

    CAS  PubMed  Google Scholar 

  23. Barrett JS, Della Casa Alberighi O, Läer S, et al. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 2012;92:40–9.

    CAS  PubMed  Google Scholar 

  24. Willmann S, Höhn K, Edginton A, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34:401–31.

    PubMed  Google Scholar 

  25. Zhang Y, Huo M, Zhou J, et al. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99:306–14.

    PubMed  Google Scholar 

  26. Stroshane RM, Koss RF, Biddlecome CE, et al. Oral and intravenous pharmacokinetics of milrinone in human volunteers. J Pharm Sci. 1984;73:1438–41.

    CAS  PubMed  Google Scholar 

  27. Young RA, Ward A. Milrinone: a preliminary review of its pharmacological properties and therapeutic use. Drugs. 1988;36:158–92.

    CAS  PubMed  Google Scholar 

  28. Alousi AA, Fabian RJ, Baker JF, et al. Milrinone. In: Scriabine A, editor. New drugs annual: cardiovascular drugs, vol. 3. New York: Raven Press; 1985. p. 245–83.

    Google Scholar 

  29. Coleman MD. Human drug metabolism: an introduction. 2nd ed. New York: Wiley; 2010.

    Google Scholar 

  30. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol. 2000;40:581–616.

    CAS  PubMed  Google Scholar 

  31. Woolfrey SG, Hegbrant J, Thysell H, et al. Dose regimen adjustment for milrinone in congestive heart failure patients with moderate and severe renal failure. J Pharm Pharmacol. 1995;47:651–5.

    CAS  PubMed  Google Scholar 

  32. National Kidney Foundation. KDOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis. 2002;39:S46–75.

    Google Scholar 

  33. Davies DF, Shock NW. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest. 1950;29:496–507.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Feneck RO. Effects of variable dose milrinone in patients with low cardiac output after cardiac surgery. European Multicenter Trial Group. Am Heart J. 1991;121:1995–9.

    CAS  PubMed  Google Scholar 

  35. Monnet X, Persichini R, Ktari M, et al. Precision of the transpulmonary thermodilution measurements. Crit Care. 2011;15:R204.

    PubMed  Google Scholar 

  36. Stetz CW, Miller RG, Kelly GE, et al. Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis. 1982;126:1001–4.

    CAS  PubMed  Google Scholar 

  37. Arnold JM, Ludmer PL, Wright RF, et al. Role of reflex sympathetic withdrawal in the hemodynamic response to an increased inotropic state in patients with severe heart failure. J Am Coll Cardiol. 1986;8:413–8.

    CAS  PubMed  Google Scholar 

  38. Cinequegrani M, Mesner C, Baggs JG, et al. Effects of continuous milrinone infusion on forearm and hepatic blood flows. Clin Res. 1984;32:155A.

    Google Scholar 

  39. Tobata D, Takao K, Mochizuki M, et al. Effects of dopamine, dobutamine, amrinone and milrinone on regional blood flow in isoflurane anesthetized dogs. J Vet Med Sci. 2004;66:1097–105.

    CAS  PubMed  Google Scholar 

  40. Chen EP, Bittner HB, Davis RD, et al. Milrinone improves pulmonary hemodynamics and right ventricular function in chronic pulmonary hypertension. Ann Thorac Surg. 1997;63:814–21.

    CAS  PubMed  Google Scholar 

  41. Sulek CA, Blas ML, Lobato EB. Milrinone increases middle cerebral artery blood flow velocity after cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2002;16:64–9.

    PubMed  Google Scholar 

  42. Cooper KE, Edholm OG, Mottram RF. The blood flow in skin and muscle of the human forearm. J Physiol. 1955;128:258–67.

    CAS  PubMed  Google Scholar 

  43. Willmann S, Lippert J, Schmitt W. From physicochemistry to absorption and distribution: predictive mechanistic modelling and computational tools. Expert Opin Drug Metab Toxicol. 2005;1:159–68.

    CAS  PubMed  Google Scholar 

  44. Hillman RS, Ault K, Rinder H. Hematology in clinical practice. 4th ed. New York: McGraw-Hill; 2005.

    Google Scholar 

  45. Tietz NW. Clinical guide to laboratory tests. 3rd ed. Philadelphia: W.B. Saunders & Co.; 1995.

    Google Scholar 

  46. Williams LR. Reference values for total blood volume and cardiac output in humans. Washington, DC: Department of Energy; 1994.

    Google Scholar 

  47. Greenblatt DJ, Harmatz JS, Shader RI. Clinical pharmacokinetics of anxiolytics and hypnotics in the elderly: therapeutic considerations (part I). Clin Pharmacokinet. 1991;21:165–77.

    CAS  PubMed  Google Scholar 

  48. Greenblatt DJ, Harmatz JS, Shader RI. Clinical pharmacokinetics of anxiolytics and hypnotics in the elderly: therapeutic considerations (part II). Clin Pharmacokinet. 1991;21:262–73.

    CAS  PubMed  Google Scholar 

  49. Zappitelli M, Bernier P, Saczkowski RS, et al. A small post-operative rise in serum creatinine predicts acute kidney injury in children undergoing cardiac surgery. Kidney Int. 2009;76:885–92.

    CAS  PubMed  Google Scholar 

  50. Han WK, Wagener G, Zhu Y, et al. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4:873–82.

    CAS  PubMed  Google Scholar 

  51. Han WK, Waikar SS, Johnson A, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008;73:863–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Krawczeski CD, Goldstein SL, Woo JG, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58:2301–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Bernstein D, Teitel D, Sidi D, et al. Redistribution of regional blood flow and oxygen delivery in experimental cyanotic heart disease in newborn lambs. Pediatr Res. 1987;22:389–93.

    CAS  PubMed  Google Scholar 

  54. Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765–74.

    PubMed  Google Scholar 

  55. McNamara PJ, Alcorn J. Protein binding predictions in infants. AAPS PharmSci. 2002;4:19–26.

    PubMed Central  Google Scholar 

  56. Chang AC, Atz AM, Wernovsky G, et al. Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit Care Med. 1995;23:1907–14.

    CAS  PubMed  Google Scholar 

  57. Hayton WL. Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci. 2000;2:22–8.

    PubMed Central  Google Scholar 

  58. Edginton AN, Schmitt W, Voith B, et al. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45:683–704.

    CAS  PubMed  Google Scholar 

  59. Tsunoo M, Momomura S, Imai Y, et al. Safety, tolerance and pharmacokinetics of milrinone in phase I study in healthy male Japanese subjects (2)—after intravenous infusion. Jpn Pharmacol Ther. 1993;21:201–21.

    Google Scholar 

  60. Bailey JM, Levy JH, Kikura M, et al. Pharmacokinetics of intravenous milrinone in patients undergoing cardiac surgery. Anesthesiology. 1994;81:616–22.

    CAS  PubMed  Google Scholar 

  61. Butterworth JF, Hines RL, Royster RL, et al. A pharmacokinetic and pharmacodynamic evaluation of milrinone in adults undergoing cardiac surgery. Anesth Analg. 1995;81:783–92.

    CAS  PubMed  Google Scholar 

  62. Das PA, Skoyles JR, Sherry KM, et al. Disposition of milrinone in patients after cardiac surgery. Br J Anaesth. 1994;72:426–9.

    CAS  PubMed  Google Scholar 

  63. de Hert SG, Moens MM, Jorens PG, et al. Comparison of two different loading doses of milrinone for weaning from cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1995;9:264–71.

    PubMed  Google Scholar 

  64. Hasei M, Uchiyama A, Nishimura M, et al. Correlation between plasma milrinone concentration and renal function in patients with cardiac disease. Acta Anaesthesiol Scand. 2008;52:991–6.

    CAS  PubMed  Google Scholar 

  65. Benotti JR, Hood WB. Dose-ranging study of intravenous milrinone to determine efficacy and pharmacokinetics. In: Braunwald E, editor. Milrinone: investigation of new inotropic therapy for congestive heart failure. New York: Raven Press; 1984. p. 95–107.

    Google Scholar 

  66. Androne A, Katz SD, Lund L, et al. Hemodilution is common in patients with advanced heart failure. Circulation. 2003;107:226–9.

    PubMed  Google Scholar 

  67. Fichtl B, Meister W, Schmied R. Serum protein binding of drugs is not altered in patients with severe chronic cardiac failure. Int J Clin Pharmacol Ther Toxicol. 1983;21:241–4.

    CAS  PubMed  Google Scholar 

  68. Ogden CL, Fryar CD, Carroll MD, et al. Mean body weight, height, and body mass index, United States 1960–2002. Adv Data. 2004;347:1–17.

    Google Scholar 

  69. World Health Organization. The WHO child growth standards. http://www.who.int/childgrowth/standards/en/. Accessed 12 Jul 2012.

  70. World Health Organization. Growth reference data for 5-19 years. http://www.who.int/growthref/en/. Accessed 10 Jul 2012.

  71. Habib RH, Zacharias A, Schwann TA, et al. Adverse effects of low hematocrit during cardiopulmonary bypass in the adult: should current practice be changed? J Thorac Cardiovasc Surg. 2003;125:1438–50.

    PubMed  Google Scholar 

  72. Dorne JL, Walton K, Renwick AG. Human variability in glucuronidation in relation to uncertainty factors for risk assessment. Food Chem Toxicol. 2001;39:1153–73.

    CAS  PubMed  Google Scholar 

  73. Dorne JL, Walton K, Renwick AG. Human variability in the renal elimination of foreign compounds and renal excretion-related uncertainty factors for risk assessment. Food Chem Toxicol. 2004;42:275–98.

    CAS  PubMed  Google Scholar 

  74. Ito K, Houston JB. Prediction of human drug clearance from in vitro and preclinical data using physiologically based and empirical approaches. Pharm Res. 2005;22:103–12.

    CAS  PubMed  Google Scholar 

  75. Jones HM, Parrott N, Jorga K, et al. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45:511–42.

    CAS  PubMed  Google Scholar 

  76. Clewell HJ, Andersen ME. Use of physiologically based pharmacokinetic modeling to investigate individual versus population risk. Toxicology. 1996;111:315–29.

    CAS  PubMed  Google Scholar 

  77. Cameron JW, Rosenthal A, Olson AD. Malnutrition in hospitalized children with congenital heart disease. Arch Pediatr Adolesc Med. 1995;149:1098–102.

    CAS  PubMed  Google Scholar 

  78. Brierley J, Peters M. Hemodynamics of milrinone loading in critically ill children. Crit Care Med. 2006;32:A63.

    Google Scholar 

  79. Brierley J, Carcillo JA, Choong K, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37:666–88.

    PubMed  Google Scholar 

  80. Benotti JR, Lesko LJ, McCue JE, et al. Pharmacokinetics and pharmacodynamics of milrinone in chronic congestive heart failure. Am J Cardiol. 1985;56:685–9.

    CAS  PubMed  Google Scholar 

  81. Fitzpatrick PG, Cinquegrani MP, Vakiener AR, et al. Hemodynamic and regional blood flow response to milrinone in patients with severe congestive heart failure: a dose-ranging study. Am Heart J. 1987;114:97–105.

    CAS  PubMed  Google Scholar 

  82. Fish DN, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet. 1997;32:101–19.

    CAS  PubMed  Google Scholar 

  83. Li F, Nandy P, Chien S, et al. Pharmacometrics-based dose selection of levofloxacin as a treatment for postexposure inhalational anthrax in children. Antimicrob Agents Chemother. 2010;54(1):375–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sun H, Ette EI, Ludden TM. On the recording of sample times and parameter estimation from repeated measures pharmacokinetic data. J Pharmacokinet Biopharm. 1996;24:637–50.

    CAS  PubMed  Google Scholar 

  85. Zuppa AF, Nicolson SC, Barrett JS, et al. Population pharmacokinetics of pentobarbital in neonates, infants, and children after open heart surgery. J Pediatr 2011;159:414–419.e1–3.

    Google Scholar 

  86. Su F, Nicolson SC, Gastonguay MR, et al. Population pharmacokinetics of dexmedetomidine in infants after open heart surgery. Anesth Analg. 2010;110:1383–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Tae Y, Kwak JG, Kim B, et al. Population pharmacokinetic analysis and dosing regimen optimization of aprotinin in neonates and young infants undergoing cardiopulmonary bypass. J Clin Pharmacol. 2011;51:1163–76.

    CAS  PubMed  Google Scholar 

  88. van Saet A, de Wildt SN. Prevention of low cardiac output syndrome in children: where is the evidence? Paediatr Anaesth. 2011;21:1173–5.

    PubMed  Google Scholar 

  89. Massé L, Antonacci M. Low cardiac output syndrome: identification and management. Crit Care Nurs Clin North Am. 2005;17:375–83.

    PubMed  Google Scholar 

  90. Zuppa AF, Nicolson SC, Adamson PC, et al. Population pharmacokinetics of milrinone in neonates with hypoplastic left heart syndrome undergoing stage I reconstruction. Anesth Analg. 2006;102:1062–9.

    CAS  PubMed  Google Scholar 

  91. Wright DFB, Duffull SB. A Bayesian dose-individualization method for warfarin. Clin Pharmacokinet. 2013;52:59–68.

    CAS  PubMed  Google Scholar 

  92. Krauss M, Burghaus R, Lippert J, et al. Using Bayesian-PBPK modeling for assessment of inter-individual variability and subgroup stratification. In Silico Pharmacol. 2013. doi:10.1186/2193-9616-1-6.

    Google Scholar 

  93. Watson S, Christian KG, Churchwell KB. Side effects of milrinone in the cardiac PICU. Clin Intensive Care. 1999;10:149.

    Google Scholar 

  94. Martinez-Anton A, Sanchez JI, Casanueva L. Impact of an intervention to reduce prescribing errors in a pediatric intensive care unit. Intensive Care Med. 2012;38:1532–8.

    PubMed  Google Scholar 

  95. Institute for Safe Medication Practices. ISMP’s list of high-alert medications. https://www.ismp.orgtoolshighalertmedications.pdf. Accessed 1 July 2013.

  96. Manolis E, Pons G. Proposals for model-based paediatric medicinal development within the current European Union regulatory framework. Br J Clin Pharmacol. 2009;68:493–501.

    PubMed  Google Scholar 

  97. Jönnson S, Henningsson A. Medical Products Agency, Uppsala, Sweden. Regulatory vision of paediatric applications. http://www.emea.europa.eu/docs/en_GB/document_library/Presentation/2009/11/WC500009845.pdf. Accessed 12 Jul 2012.

  98. Zhao P, Zhang L, Grillo JA, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther. 2011;89:259–67.

    CAS  PubMed  Google Scholar 

  99. Anderson BJ, Merry AF. Data sharing for pharmacokinetic studies. Paediatr Anaesth. 2009;19:1005–10.

    PubMed  Google Scholar 

  100. Knox C, Law V, Jewison T, et al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 2011;39:D1035–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Altomare C, Cellamare S, Summo L, et al. Ionization behaviour and tautomerism-dependent lipophilicity of pyridine-2(1H)-one cardiotonic agents. Bioorg Med Chem. 2000;8:909–16.

    CAS  PubMed  Google Scholar 

  102. de Candia M, Fossa P, Cellamare S, et al. Insights into structure-activity relationships from lipophilicity profiles of pyridin-2(1H)-one analogs of the cardiotonic agent milrinone. Eur J Pharm Sci. 2005;26:78–86.

    PubMed  Google Scholar 

  103. Maganti M, Badiwala M, Sheikh A, et al. Predictors of low cardiac output syndrome after isolated mitral valve surgery. J Thorac Cardiovasc Surg. 2010;140:790–6.

    PubMed  Google Scholar 

  104. Maganti MD, Rao V, Borger MA, et al. Predictors of low cardiac output syndrome after isolated aortic valve surgery. Circulation. 2005;112:I448–52.

    PubMed  Google Scholar 

  105. Vánky FB, Håkanson E, Tamás E, et al. Risk factors for postoperative heart failure in patients operated on for aortic stenosis. Ann Thorac Surg. 2006;81:1297–304.

    PubMed  Google Scholar 

  106. Arribas Leal JM, Pascual DA, et al. Epidemiology and new predictors of low cardiac output syndrome after isolated coronary artery bypass grafting. Eur Heart J. 2010;31:68–9.

    Google Scholar 

  107. McKinlay KH, Schinderle DB, Swaminathan M, et al. Predictors of inotrope use during separation from cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2004;18:404–8.

    PubMed  Google Scholar 

  108. Müller M, Junger A, Bräu M, et al. Incidence and risk calculation of inotropic support in patients undergoing cardiac surgery with cardiopulmonary bypass using an automated anaesthesia record-kee** system. Br J Anaesth. 2002;89:398–404.

    PubMed  Google Scholar 

  109. Butterworth JF, Legault C, Royster RL, et al. Factors that predict the use of positive inotropic drug support after cardiac valve surgery. Anesth Analg. 1998;86:461–7.

    PubMed  Google Scholar 

  110. Rao V, Ivanov J, Weisel RD, et al. Predictors of low cardiac output syndrome after coronary artery bypass. J Thorac Cardiovasc Surg. 1996;112:38–51.

    CAS  PubMed  Google Scholar 

  111. Jungbauer CG, Birner C, Jung B, et al. Kidney injury molecule-1 and N-acetyl-β-D-glucosaminidase in chronic heart failure: possible biomarkers of cardiorenal syndrome. Eur J Heart Fail. 2011;13:1104–10.

    CAS  PubMed  Google Scholar 

  112. Ochs HR, Schuppan U, Greenblatt DJ, et al. Reduced distribution and clearance of acetaminophen in patients with congestive heart failure. J Cardiovasc Pharmacol. 1983;5:697–9.

    CAS  PubMed  Google Scholar 

  113. Miners JO, Mackenzie PI. Drug glucuronidation in humans. Pharmacol Ther. 1991;51:347–69.

    CAS  PubMed  Google Scholar 

  114. Ng CY, Ghabrial H, Morgan DJ, et al. Right heart failure impairs hepatic elimination of p-nitrophenol without inducing changes in content or latency of hepatic UDP-glucuronosyltransferases. J Pharmacol Exp Ther. 2000;295:830–5.

    CAS  PubMed  Google Scholar 

  115. Ljungman S, Laragh JH, Cody RJ. Role of the kidney in congestive heart failure: relationship of cardiac index to kidney function. Drugs. 1990;39:10–21.

    PubMed  Google Scholar 

  116. Leithe ME, Margorien RD, Hermiller JB, et al. Relationship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure. Circulation. 1984;69:57–64.

    CAS  PubMed  Google Scholar 

  117. Zelis R, Flaim SF. Alterations in vasomotor tone in congestive heart failure. Prog Cardiovasc Dis. 1982;24:437–59.

    CAS  PubMed  Google Scholar 

  118. Feneck RO, Sherry KM, Withington PS, et al. Comparison of the hemodynamic effects of milrinone with dobutamine in patients after cardiac surgery. J Cardiothorac Vasc Anesth. 2001;15:306–15.

    CAS  PubMed  Google Scholar 

  119. Hiraoka H, Yamamoto K, Okano N, et al. Changes in drug plasma concentrations of an extensively bound and highly extracted drug, propofol, in response to altered plasma binding. Clin Pharmacol Ther. 2004;75:324–30.

    CAS  PubMed  Google Scholar 

  120. Lee E, Chin J, Choi D, et al. Postoperative hypoalbuminemia is associated with outcome in patients undergoing off-pump coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2011;25:462–8.

    CAS  PubMed  Google Scholar 

  121. Wijeysundera DN, Rao V, Beattie WS, et al. Evaluating surrogate measures of renal dysfunction after cardiac surgery. Anesth Analg. 2003;96:1265–73.

    PubMed  Google Scholar 

  122. Palomba H, de Castro I, Neto ALC, et al. Acute kidney injury prediction following elective cardiac surgery: AKICS score. Kidney Int. 2007;72:624–31.

    CAS  PubMed  Google Scholar 

  123. Llopart T, Lombardi R, Forselledo M, et al. Acute renal failure in open heart surgery. Ren Fail. 1997;19:319–23.

    CAS  PubMed  Google Scholar 

  124. Shim CK, Sawada Y, Iga T, et al. Estimation of renal secretory function for organic cations by endogenous N1-methylnicotinamide in rats with experimental renal failure. J Pharmacokinet Biopharm. 1984;12:23–42.

    CAS  PubMed  Google Scholar 

  125. Park JM, Lin YS, Calamia JC, et al. Transiently altered acetaminophen metabolism after liver transplantation. Clin Pharmacol Ther. 2003;73:545–53.

    CAS  PubMed  Google Scholar 

  126. Subramanian RM, Chandel N, Budinger GRS, et al. Hypoxic conformance of metabolism in primary rat hepatocytes: a model of hepatic hibernation. Hepatology. 2007;45:455–64.

    CAS  PubMed  Google Scholar 

  127. Ruokonen E, Takala J, Kari A. Regional blood flow and oxygen transport in patients with the low cardiac output syndrome after cardiac surgery. Crit Care Med. 1993;21:1304–11.

    CAS  PubMed  Google Scholar 

  128. Bulkley GB, Oshima A, Bailey RW. Pathophysiology of hepatic ischemia in cardiogenic shock. Am J Surg. 1986;151:87–97.

    CAS  PubMed  Google Scholar 

  129. Hall C, Mørkrid L, Kjekshus J. Redistribution of peripheral blood flow during acute left ventricular failure in the dog. Scand J Clin Lab Invest. 1988;48:785–94.

    CAS  PubMed  Google Scholar 

  130. Smiseth OA, Riemersma RA, Steinnes K, et al. Regional blood flow during acute heart failure in dogs. Role of adipose tissue perfusion in regulating plasma-free fatty acids. Scand J Clin Lab Invest. 1983;43:285–92.

    CAS  PubMed  Google Scholar 

  131. Sapirstein LA, Sapirstein EH, Bredemeyer A. Effect of hemorrhage on the cardiac output and its distribution in the rat. Circ Res. 1960;8:135–48.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge the support of Sanofi Aventis, Germany, for the provision of the original pharmacokinetic datasets for the studies by Stroshane et al. [26] and Bailey et al. [7]. Also, I sincerely thank Dr. Butterworth and Dr. James, Dr. Bailey and F. Szlam, Dr. Uchiyama and Dr. Hasei, and Dr. Woolfrey for providing their original pharmacokinetic datasets for further analysis. I would also like to thank Dr. Coboeken and Dr. Willmann from Bayer Technology Services for technical assistance with Mobi®, and S. Ramusovic for the introduction to Matlab™ and Mobi®. My sincere thanks go to my friend and former colleague Dr. Hsien as well as to Dr. Steinsträßer from Sanofi Aventis for reviewing and commenting on the manuscript. The results presented in this article are part of the PhD work of Ms. Vogt, carried out at Heinrich-Heine-Universität Düsseldorf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winnie Vogt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 115 kb)

Supplementary material 2 (PDF 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, W. Evaluation and Optimisation of Current Milrinone Prescribing for the Treatment and Prevention of Low Cardiac Output Syndrome in Paediatric Patients After Open Heart Surgery Using a Physiology-Based Pharmacokinetic Drug–Disease Model. Clin Pharmacokinet 53, 51–72 (2014). https://doi.org/10.1007/s40262-013-0096-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0096-z

Keywords

Navigation