Log in

Adsorptive removal of oil spill from sea water surface using magnetic wood sawdust as a novel nano-composite synthesized via microwave approach

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Water pollution by oil is a serious environmental problem. Develo** new generation of benign adsorbents satisfying several criteria required for real practical application is of great need. This work introduces an effort in this direction, by utilizing a facile synthesis of wood sawdust coated magnetite nanoparticles functionalized stearic acid (WSD@Fe3O4NPs/SA) as a novel nano composite along with its precursor WSD@Fe3O4NPs. SA was covalently bonded to the precursor by amide bond formation via the interaction with the silylating agent 3-aminopropyltrimethoxysilane (3-APTS). This mode of binding is more stronger than the conventional ester bond. Fourier transform infrared (FT-IR), X- ray powder diffraction (XRD), Scanning electron microscope (SEM) and Transmittance electron microscope (TEM) were employed for characterization and follow up the synthesis process. Application of the newly synthesized magnetic nano composite adsorbent under optimized parameters of contact time (min) and composite dosage (g) reveal high removal capacity values (g/g) evaluated to be 28.32 g/g, 5 min and 0.1 g for used motor oil removal and 41.22 g/g, 10 min and 0.1 g for crude oil. The high removal efficiency exhibited by WSD@Fe3O4NPs/SA was mainly argued to the long hydrocarbon chain of SA moiety and additional ـــ (CH2)3 ـــ groups incorporated 3-ATPS. Moreover, Analysis of the oil adsorption experimental equilibrium data were well fitted with Freundlish model with correlation coefficients r2 = 0.9788 and 0.9896 for used motor oil and crude oil, respectively. The kinetic data were correlated using two kinetic models and the results were in harmony with pseudo-second order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Uncategorized references

  1. Wei QF, Mather RR, Fotheringham AF, Yang RD. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar Pollut Bull. 2003;46(6):780–3. https://doi.org/10.1016/S0025-326X(03)00042-0.

    Article  CAS  Google Scholar 

  2. Fathy M, El-Sayed M, Ramzi M, Abdelraheem OH. Adsorption separation of condensate oil from produced water using ACTF prepared of oil palm leaves by batch and fixed bed techniques. Egypt J Pet. 2018;27(3):319–26. https://doi.org/10.1016/j.ejpe.2017.05.005.

    Article  Google Scholar 

  3. Abbasi Monfared M, Sheikhi M, Kasiri N, Mohammadi T. Experimental investigation of oil-in-water microfiltration assisted by Dielectrophoresis: operational condition optimization. Chem Eng Res Des. 2018;137:421–33. https://doi.org/10.1016/j.cherd.2018.08.002.

    Article  CAS  Google Scholar 

  4. Fredriksen SB, Rognmo AU, Fernø MA. Pore-scale mechanisms during low salinity waterflooding: oil mobilization by diffusion and osmosis. J Pet Sci Eng. 2018;163:650–60. https://doi.org/10.1016/j.petrol.2017.10.022.

    Article  CAS  Google Scholar 

  5. Abdelwahab NA, Abd El-Ghaffar MA. Preparation and characterization of highly hydrophobic magnetic polyaniline nanocomposite for fast and efficient separation of diesel oil from seawater. Mater Res Bull. 2016;84:7–14. https://doi.org/10.1016/j.materresbull.2016.07.022.

    Article  CAS  Google Scholar 

  6. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater. 2003;10(3):159–70. https://doi.org/10.1023/A:1027484117065.

    Article  CAS  Google Scholar 

  7. Nakazawa M, Somorjai GA. Coadsorption of water and selected aromatic molecules to model the adhesion of epoxy resins on hydrated surfaces of zinc oxide and iron oxide. Appl Surf Sci. 1995;84(3):309–23. https://doi.org/10.1016/0169-4332(94)00537-0.

    Article  CAS  Google Scholar 

  8. Gao G-M, Liu D-R, Zou H-F, Zou L-C, Gan S-C. Preparation of silica aerogel from oil shale ash by fluidized bed drying. Powder Technol. 2010;197(3):283–7. https://doi.org/10.1016/j.powtec.2009.10.005.

    Article  CAS  Google Scholar 

  9. Nassar MY, Abdelrahman EA, Aly AA, Mohamed TY. A facile synthesis of mordenite zeolite nanostructures for efficient bleaching of crude soybean oil and removal of methylene blue dye from aqueous media. J Mol Liq. 2017;248:302–13. https://doi.org/10.1016/j.molliq.2017.10.061.

    Article  CAS  Google Scholar 

  10. Ugochukwu UC, Fialips CI. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: effect of acid activated clay minerals. Chemosphere. 2017;178:65–72. https://doi.org/10.1016/j.chemosphere.2017.03.035.

    Article  CAS  Google Scholar 

  11. Takeuchi K, Kitazawa H, Fujishige M, Akuzawa N, Ortiz-Medina J, Morelos-Gomez A, et al. Oil removing properties of exfoliated graphite in actual produced water treatment. Journal of Water Process Engineering. 2017;20:226–31. https://doi.org/10.1016/j.jwpe.2017.11.009.

    Article  Google Scholar 

  12. Peng Y, Yu Z, Li F, Chen Q, Yin D, Min X. A novel reduced graphene oxide-based composite membrane prepared via a facile deposition method for multifunctional applications: oil/water separation and cationic dyes removal. Sep Purif Technol. 2018;200:130–40. https://doi.org/10.1016/j.seppur.2018.01.059.

    Article  CAS  Google Scholar 

  13. Shaheen HA, Marwani HM, Soliman EM. Selective adsorption of gold ions from complex system using oxidized multi-walled carbon nanotubes. J Mol Liq. 2015;212:480–6. https://doi.org/10.1016/j.molliq.2015.09.040.

    Article  CAS  Google Scholar 

  14. Chin SF, Binti Romainor AN, Pang SC. Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett. 2014;115:241–3. https://doi.org/10.1016/j.matlet.2013.10.061.

    Article  CAS  Google Scholar 

  15. Raj KG, Joy PA. Coconut shell based activated carbon–iron oxide magnetic nanocomposite for fast and efficient removal of oil spills. Journal of Environmental Chemical Engineering. 2015;3(3):2068–75. https://doi.org/10.1016/j.jece.2015.04.028.

    Article  CAS  Google Scholar 

  16. Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, et al. Ultrapermeable. Reverse-Selective Nanocomposite Membranes Science. 2002;296(5567):519–22. https://doi.org/10.1126/science.1069580.

    Article  CAS  Google Scholar 

  17. Gupta S, He W-D, Tai N-H. A comparative study on superhydrophobic sponges and their application as fluid channel for continuous separation of oils and organic solvents from water. Compos Part B. 2016;101:99–106. https://doi.org/10.1016/j.compositesb.2016.06.002.

    Article  CAS  Google Scholar 

  18. Yu L, Hao G, Liang Q, Zhou S, Zhang N, Jiang W. Facile preparation and characterization of modified magnetic silica nanocomposite particles for oil absorption. Applied Surface Science. 2015;357, Part B:2297–305. https://doi.org/10.1016/j.apsusc.2015.09.231.

  19. Zang D, Liu F, Zhang M, Gao Z, Wang C. Novel superhydrophobic and superoleophilic sawdust as a selective oil sorbent for oil spill cleanup. Chem Eng Res Des. 2015;102:34–41. https://doi.org/10.1016/j.cherd.2015.06.014.

    Article  CAS  Google Scholar 

  20. Banerjee SS, Joshi MV, Jayaram RV. Treatment of oil spill by sorption technique using fatty acid grafted sawdust. Chemosphere. 2006;64(6):1026–31. https://doi.org/10.1016/j.chemosphere.2006.01.065.

    Article  CAS  Google Scholar 

  21. Lanigan RM, Sheppard TD. Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions. Eur J Org Chem. 2013;2013(33):7453–65.

    Article  CAS  Google Scholar 

  22. Kumar R, Barakat M, Soliman EM. Removal of tannic acid from aqueous solution by magnetic carbohydrate natural polymer. J Ind Eng Chem. 2014;20(5):2992–7.

    Article  CAS  Google Scholar 

  23. Yamaura M, Camilo RL, Sampaio LC, Macêdo MA, Nakamura M, Toma HE. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater. 2004;279(2):210–7. https://doi.org/10.1016/j.jmmm.2004.01.094.

    Article  CAS  Google Scholar 

  24. Ahmed SA, Soliman EM. Silica coated magnetic particles using microwave synthesis for removal of dyes from natural water samples: synthesis, characterization, equilibrium, isotherm and kinetics studies. Appl Surf Sci. 2013;284:23–32. https://doi.org/10.1016/j.apsusc.2013.06.129.

    Article  CAS  Google Scholar 

  25. Gan W, Gao L, Zhang W, Li J, Cai L, Zhan X. Removal of oils from water surface via useful recyclable CoFe2O4/sawdust composites under magnetic field. Mater Des. 2016;98:194–200. https://doi.org/10.1016/j.matdes.2016.03.018.

    Article  CAS  Google Scholar 

  26. Di X, Zhang W, Jiang Z, Zhang M, Wang Y, Liu F, et al. Facile and rapid separation of oil from emulsions by hydrophobic and lipophilic Fe3O4/sawdust composites. Chem Eng Res Des. 2018;129:102–10. https://doi.org/10.1016/j.cherd.2017.10.025.

    Article  CAS  Google Scholar 

  27. Lange's Handbook of chemistry. 7th ed. edited by norbert Adolph Lange. Handbook Publishers, Sandusky, Ohio, 1949. xvi + 1920pp. 13 × 20cm. Price $ 7. Journal of the American Pharmaceutical Association (Scientific ed). 1949;38(12):667. https://doi.org/10.1002/jps.3030381240.

  28. Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, et al. Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci. 2010;345(2):234–40. https://doi.org/10.1016/j.jcis.2010.01.087.

    Article  CAS  Google Scholar 

  29. P-s Q, Lin N, Y-z L, J-j Z. Improvement of oil/water selectivity by stearic acid modified expanded perlite for oil spill cleanup. Journal of Shanghai Jiaotong University (Science). 2013;18(4):500–7.

    Article  Google Scholar 

  30. Soliman EM, Marwani HM, Albishri HM. Novel solid-phase extractor based on functionalization of multi-walled carbon nano tubes with 5-aminosalicylic acid for preconcentration of Pb (II) in water samples prior to determination by ICP-OES. Environ Monit Assess. 2013;185(12):10269–80.

    Article  CAS  Google Scholar 

  31. Fan P, Yuan Y, Ren J, Yuan B, He Q, **a G, et al. Facile and green fabrication of cellulosed based aerogels for lampblack filtration from waste newspaper. Carbohydr Polym. 2017;162:108–14. https://doi.org/10.1016/j.carbpol.2017.01.015.

    Article  CAS  Google Scholar 

  32. Fan L, Zhang Y, Li X, Luo C, Lu F, Qiu H. Removal of alizarin red from water environment using magnetic chitosan with alizarin red as imprinted molecules. Colloids Surf B: Biointerfaces. 2012;91:250–7. https://doi.org/10.1016/j.colsurfb.2011.11.014.

    Article  CAS  Google Scholar 

  33. Fu X, Chen X, Wang J, Liu J. Fabrication of carboxylic functionalized superparamagnetic mesoporous silica microspheres and their application for removal basic dye pollutants from water. Microporous Mesoporous Mater. 2011;139(1):8–15. https://doi.org/10.1016/j.micromeso.2010.10.004.

    Article  CAS  Google Scholar 

  34. Prinsen P, Luque R, González-Arellano C. Zeolite catalyzed palmitic acid esterification. Microporous Mesoporous Mater. 2018;262:133–9. https://doi.org/10.1016/j.micromeso.2017.11.029.

    Article  CAS  Google Scholar 

  35. Wang Y-T, Fang Z, Zhang F. Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst. Catal Today. 2018. https://doi.org/10.1016/j.cattod.2018.06.041.

  36. Keyhanian F, Shariati S, Faraji M, Hesabi M. Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arab J Chem. 2016;9:S348–S54. https://doi.org/10.1016/j.arabjc.2011.04.012.

    Article  CAS  Google Scholar 

  37. Gan W, Gao L, Zhang W, Li J, Zhan X. Fabrication of microwave absorbing CoFe2O4 coatings with robust superhydrophobicity on natural wood surfaces. Ceram Int. 2016;42(11):13199–206. https://doi.org/10.1016/j.ceramint.2016.05.112.

    Article  CAS  Google Scholar 

  38. Li J, Luo M, Zhao C-J, Li C-Y, Wang W, Zu Y-G, et al. Oil removal from water with yellow horn shell residues treated by ionic liquid. Bioresour Technol. 2013;128:673–8. https://doi.org/10.1016/j.biortech.2012.11.009.

    Article  CAS  Google Scholar 

  39. Yu L, Hao G, Gu J, Zhou S, Zhang N, Jiang W. Fe3O4/PS magnetic nanoparticles: synthesis, characterization and their application as sorbents of oil from waste water. J Magn Magn Mater. 2015;394:14–21. https://doi.org/10.1016/j.jmmm.2015.06.045.

    Article  CAS  Google Scholar 

  40. Radetic M, Ilic V, Radojevic D, Miladinovic R, Jocic D, Jovancic P. Efficiency of recycled wool-based nonwoven material for the removal of oils from water. Chemosphere. 2008;70(3):525–30. https://doi.org/10.1016/j.chemosphere.2007.07.005.

    Article  CAS  Google Scholar 

  41. Shiu R-F, Lee C-L, Hsieh P-Y, Chen C-S, Kang Y-Y, Chin W-C, et al. Superhydrophobic graphene-based sponge as a novel sorbent for crude oil removal under various environmental conditions. Chemosphere. 2018;207:110–7. https://doi.org/10.1016/j.chemosphere.2018.05.071.

    Article  CAS  Google Scholar 

  42. Vlaev L, Petkov P, Dimitrov A, Genieva S. Cleanup of water polluted with crude oil or diesel fuel using rice husks ash. J Taiwan Inst Chem Eng. 2011;42(6):957–64. https://doi.org/10.1016/j.jtice.2011.04.004.

    Article  CAS  Google Scholar 

  43. Al Zubaidi IAH, Al Tamimi AK, Ahmed H. Remediation of water from crude oil spill using a fibrous sorbent. Environmental Technology & Innovation. 2016;6:105–14. https://doi.org/10.1016/j.eti.2016.08.002.

    Article  Google Scholar 

  44. Ye X, Cui Y, Ke L, Gao K, Huang X, Shi B. Fabrication of 3D porous superhydrophobic sponges using plant polyphenol-Fe3+ complexes as adhesive and their applications in oil/water separation. Colloids Surf A Physicochem Eng Asp. 2018;551:9–16. https://doi.org/10.1016/j.colsurfa.2018.04.053.

    Article  CAS  Google Scholar 

  45. Wang J, Zheng Y, Wang A. Investigation of acetylated kapok fibers on the sorption of oil in water. J Environ Sci. 2013;25(2):246–53. https://doi.org/10.1016/S1001-0742(12)60031-X.

    Article  CAS  Google Scholar 

  46. Gui X, Li H, Wang K, Wei J, Jia Y, Li Z, et al. Recyclable carbon nanotube sponges for oil absorption. Acta Mater. 2011;59(12):4798–804. https://doi.org/10.1016/j.actamat.2011.04.022.

    Article  CAS  Google Scholar 

  47. Ahmed SA, Soliman EM. New trend for acceleration solid phase extraction process based on using magnetic Nano-adsorbents along with surface functionalization through microwave assisted solvent-free technique. Anal Sci. 2015;31(10):1047–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezzat M. Soliman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, E.M., Ahmed, S.A. & Fadl, A.A. Adsorptive removal of oil spill from sea water surface using magnetic wood sawdust as a novel nano-composite synthesized via microwave approach. J Environ Health Sci Engineer 18, 79–90 (2020). https://doi.org/10.1007/s40201-019-00440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-019-00440-4

Keywords

Navigation