Log in

Hot Working Characteristic of Superaustenitic Stainless Steel 254SMO

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Hot deformation characteristic of superaustenitic stainless steel 254SMO has been studied by isothermal compression testing in the temperature range of 950–1,200 °C and strain rate range of 0.01–10 s−1. The activation energy of 496 kJ/mol was calculated by a hyperbolic-sine type equation over the entire range of strain rates and temperatures. In order to obtain optimum hot working conditions, processing maps consisting of power dissipation map and instability map were constructed at different strains. The power dissipation map exhibits two domains with relatively high efficiencies of power dissipation. The first domain occurs in the temperature range of 990–1,070 °C and the strain rate range of 0.01–0.1 s−1. Microstructure observation in this domain indicates the partial dynamic recrystallization (DRX) accompanied with precipitation of tetragonal sigma phase. The second domain occurs in the temperature range of 1,140–1,200 °C and the strain rate range of 0.01–1 s−1 with a peak efficiency of power dissipation of 39%, and in this domain, the microstructure observation reveals the full DRX. The instability map shows that flow instability occurs at the temperatures below 1,140 °C and the strain rates above 0.1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Koutsoukis, S. Zormalia, P. Kokkonidis, Adv. Mater. Res. 89–91, 301 (2011)

    Google Scholar 

  2. C.C. Wu, S.H. Wang, C.Y. Chen, Scr. Mater. 56, 717 (2007)

    Article  Google Scholar 

  3. E.A. Abd El Meguid, A.A. Abd El Latif, Corros. Sci. 46, 2431 (2004)

    Article  Google Scholar 

  4. Y.V.R.K. Prasad, T. Seshacharyulu, Mater. Sci. Eng. A 243, 82 (1998)

    Article  Google Scholar 

  5. N. Srinivasan, Y.V.R.K. Prasad, Metall. Mater. Trans. A 25, 2275 (1994)

    Article  Google Scholar 

  6. B.F. Guo, H.P. Ji, X.G. Liu, L. Gao, J. Mater. Eng. Perform. 21, 1455 (2012)

    Article  Google Scholar 

  7. S. Venugopal, S.L. Mannan, Y.V.R.K. Prasad, Metall. Trans. A 23, 3093 (1992)

    Article  Google Scholar 

  8. S.P. Tan, Z.H. Wang, S.C. Cheng, Mater. Sci. Eng. A 517, 312 (2009)

    Article  Google Scholar 

  9. Y.V.R.K. Prasad, Metall. Mater. Trans. A 27, 235 (1996)

    Article  Google Scholar 

  10. Y.V.R.K. Prasad, H.L. Gegel, S.M. Draivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.A. Barker, Metall. Trans. A 15, 1883 (1984)

    Article  Google Scholar 

  11. Y.V.R.K. Prasad, Mater. Eng. Perform. 12, 638 (2003)

    Article  Google Scholar 

  12. H. Ziegler, in Progress in solid mechanics, vol. 4, ed. by I.N. Sneedon, R. Hill (Wiley, New York, 1963), p. 63

    Google Scholar 

  13. S.C. Medeoros, W.G. Frazier, Y.V.R.K. Prasad, Metall. Mater. Trans. A 31, 2317 (2000)

    Article  Google Scholar 

  14. S.J. Lee, Y.K. Lee, Mater. Des. 29, 1840 (2008)

    Article  Google Scholar 

  15. J.B. Ren, Z.G. Song, W.J. Zheng, J.Z. **ang, J. Iron Steel Res. 24, 41 (2012). (in Chinese)

    Google Scholar 

  16. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, X.M. Zhang, Mater. Sci. Eng. A 497, 479 (2008)

    Article  Google Scholar 

  17. Y.V.R.K. Prasad, N. Ravichandran, Bull. Mater. Sci. 14, 1241 (1991)

    Article  Google Scholar 

  18. C.M. Sellars, W.J.M. Tegart, Int. Metall. Rev. 17, 1 (1972)

    Article  Google Scholar 

  19. H. Mirzadeh, J.M. Cabrera, J.M. Prado, A. Najafizadeh, Mater. Sci. Eng. A 528, 3876 (2011)

    Article  Google Scholar 

  20. S.I. Kim, Y.C. Yoo, Mater. Sci. Eng. A 311, 108 (2001)

    Article  Google Scholar 

  21. Q.L. Yong, Secondary phases in steels (Metallurgy Industry press, Bei**g, 2006), pp. 85–87. in Chinese

    Google Scholar 

  22. W.F. Smith, J. Hashemi, Foundations of materials science and engineering (China Machine Press, Bei**g, 2011), pp. 204–206

    Google Scholar 

  23. L. Briottet, J.J. Jonas, F. Montheillet, Acta Mater. 44, 1665 (1996)

    Article  Google Scholar 

  24. Y.Q. Ning, Z.K. Yao, H. Li, Mater. Sci. Eng. A 527, 961 (2010)

    Article  Google Scholar 

  25. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, R. Srinivasan, Mater. Sci. Eng. A 193, 198 (2000)

    Article  Google Scholar 

  26. S.H. Cho, S.I. Kim, Y.C. Yoo, J. Mater. Sci. Lett. 16, 1836 (1997)

    Article  Google Scholar 

  27. R. Raj, Metall. Trans. A 12, 1089 (1981)

    Article  Google Scholar 

  28. Y. Wang, L. Zhen, W.Z. Shao, L. Yang, X.M. Zhang, J. Alloys Compd. 474, 341 (2009)

    Article  Google Scholar 

  29. Y.V.R.K. Prasad, T. Seshacharyulu, Int. Mater. Rev. 43, 245 (1998)

    Article  Google Scholar 

  30. S.L. Guo, D.F. Li, H.J. Pen, Q.M. Guo, J. Hu, J. Nucl. Mater. 410, 52 (2011)

    Article  Google Scholar 

  31. A.H. Asli, A.Z. Hanzaki, J. Mater. Sci. Technol. 25, 603 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Zheng.

Additional information

Available online at http://springer.longhoe.net/journal/40195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, E., Zheng, W., **ang, J. et al. Hot Working Characteristic of Superaustenitic Stainless Steel 254SMO. Acta Metall. Sin. (Engl. Lett.) 27, 313–323 (2014). https://doi.org/10.1007/s40195-014-0047-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0047-1

Keywords

Navigation