Log in

Relationship between ferrite–austenite phase transformation and precipitation behavior of sigma phase in super duplex stainless steel weldment

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The presence of sigma phase in duplex stainless steel weldments can cause embrittlement. The precipitation takes place at a temperature range in which austenite is also formed. The aim of this study was to investigate the relationship between the ferrite–austenite phase transformation and sigma phase precipitation in super duplex stainless steel welds. Different microstructures created by autogenous gas tungsten arc welding (weld metal) and induction heating (heat-affected zone) were aged at 800–950 °C. For all investigated microstructures, there was a gradual increase in austenite content with the annealing time and the sigma phase precipitation did not begin until the ferrite ratio had reached approximately 50%. The change in the concentration of solute elements in the ferrite phase upon aging was investigated using energy dispersive X-ray spectroscopy (EDS). The nickel content decreased with an increase in the austenite content, whereas the chromium and molybdenum contents increased with a lower ferrite ratio. The chromium and molybdenum contents decreased after the sigma phase precipitated. It was found that the sigma phase occurs after the concentration of the solute elements reaches an arbitrary threshold, which for this alloy was obtained at approximately 50% ferrite. The start temperature of sigma phase precipitation was correlated with the ferrite-austenitic phase balance in all microstructures using the Johnson–Mehl–Avrami-Kormogolov (JMAK) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nelson DE, Baeslack WA III, Lippold JC (1985) Characterization of the weld structure in a duplex stainless steel using color metallography. Metallography 18:215–225. https://doi.org/10.1016/0026-0800(85)90043-6

    Article  CAS  Google Scholar 

  2. Kokawa H, Tsory E, North TH (1995) Nitride precipitation in duplex stainless steel weld metal. ISIJ Int 35:1277–1283. https://doi.org/10.2355/isi**ternational.35.1277

    Article  CAS  Google Scholar 

  3. Kokawa H, Okada J, Kuwana T (1992) Nitrogen absorption and microstructure of duplex stainless steel weld metal. Quarterly Journal of the Japan Welding Society 10:496–502 ((in Japanese))

    Article  CAS  Google Scholar 

  4. Vitek JM, David SA (1986) The sigma phase transformation in austenitic stainless steels. Weld J 65:106s–111s

    Google Scholar 

  5. Grobner PJ (1973) The 885°F (475°C) embrittlement of ferritic stainless steels. Metallurgical Transactions 4:251–260

    Article  CAS  Google Scholar 

  6. Sato YS, Kokawa H (1999) Preferential precipitation site of sigma phase in duplex stainless steel weld metal. Scripta Mater 40:659–663. https://doi.org/10.1016/S1359-6462(98)00483-7

    Article  CAS  Google Scholar 

  7. Johnson E, Kim YJ, Chumbley LS, Gleeson B (2004) Initial phase transformation diagram determination for the CD3MN cast duplex stainless steel. Scripta Mater 50:1351–1354. https://doi.org/10.1016/j.scriptamat.2004.02.014

    Article  CAS  Google Scholar 

  8. Sieurin H, Sandström R (2006) Austenite reformation in the heat-affected zone of duplex stainless steel 2205. Mater Sci Eng 418:250–256. https://doi.org/10.1016/j.msea.2005.11.025

    Article  CAS  Google Scholar 

  9. Sieurin H, Sandström R (2007) Sigma phase precipitation in duplex stainless steel 2205. Mater Sci Eng 444:271–276. https://doi.org/10.1016/j.msea.2006.08.107

    Article  CAS  Google Scholar 

  10. Elmer JW, Palmer TA, Specht ED (2007) Direct observations of sigma phase formation in duplex stainless steels using in-situ synchrotron X-ray diffraction. Metall and Mater Trans A 38:464–475. https://doi.org/10.1007/s11661-006-9076-3

    Article  CAS  Google Scholar 

  11. Cho HS, Lee K (2013) Effect of cold working and isothermal aging on the precipitation of sigma phase in 2205 duplex stainless steel. Mater Charact 75:29–34. https://doi.org/10.1016/j.matchar.2012.10.006

    Article  CAS  Google Scholar 

  12. Hosseini VA, Valiente Bermejo MAV, Gårdstam J, Hurtig K, Karlsson L (2016) Influence of multiple thermal cycles on microstructure of heat-affected zone in TIG-welded super duplex stainless steel. Welding in the World 60:233–245. https://doi.org/10.1007/s40194-016-0300-5

    Article  CAS  Google Scholar 

  13. Hosseini VA, Hurtig K, Karlsson L (2020) Bead by bead study of a multipass shielded metal arc-welded super-duplex stainless steel. Welding in the World 64:283–299. https://doi.org/10.1007/s40194-019-00829-7

    Article  CAS  Google Scholar 

  14. Putz A, Hosseini VA, Westin EM, Enzinger N (2020) Microstructure investigation of duplex stainless steel welds using arc heat treatment technique. Welding in the World 64:1135–1147. https://doi.org/10.1007/s40194-020-00906-2

    Article  CAS  Google Scholar 

  15. Nakade K (2003) Sigma phase precipitation and its influence on hydrogen induced cracking of duplex stainless steel base metal and weld metal. Welding in the World 47:9–20. https://doi.org/10.1007/BF03266396

    Article  CAS  Google Scholar 

  16. Fargas G, Mestra A, Mateo A (2013) Effect of sigma phase on the wear behavior of a super duplex stainless steel. Wear 303:584–590. https://doi.org/10.1016/j.wear.2013.04.010

    Article  CAS  Google Scholar 

  17. Hosseini VA, Karlsson L, Wessman S, Fuertes N (2018) Effect of sigma phase morphology on the degradation of properties in a super duplex stainless steel. Materials 11:933. https://doi.org/10.3390/ma11060933

    Article  CAS  Google Scholar 

  18. Kozai H, Ikkai T, Nakatui T (1963) Sigma formation and 475°C embrittlement of high chromium steel plates and these weld metals. Journal of the Japan Welding Society 32:779–785 ((in Japanese))

    Article  Google Scholar 

  19. Ikawa H, Nakao Y, Nishimoto K, Terashima M (1979) Embrittlement in the weld of high purity 30Cr-2Mo steel. Journal of the Japan Welding Society 48:1054–1059 ((in Japanese))

    Article  CAS  Google Scholar 

  20. Ogawa K, Miura M, Komizo Y (1991) HAZ toughness of high silicon containing duplex stainless steel. Quarterly Journal of the Japan Welding Society 9:269–275 ((in Japanese))

    Article  CAS  Google Scholar 

  21. Maehara Y, Koike M, Fu**o N, Kunitake T (1981) Precipitation behavior of sigma phase in duplex phase stainless steel. Tetsu-to-Hagane 67:577–586 ((in Japanese))

    Article  CAS  Google Scholar 

  22. Koseki T, Ogawa T (1991) An investigation on the weld solidification of Cr-Ni-Fe-Mo alloys. Quarterly Journal of the Japan Welding Society 9:143–149 ((in Japanese))

    Article  CAS  Google Scholar 

  23. Atamert S, King JE (1993) Sigma-phase formation and its prevention in duplex stainless steels. J Mater Sci Lett 12:1144–1147. https://doi.org/10.1007/BF00420548

    Article  CAS  Google Scholar 

  24. Kuroda T, Kikuchi Y, Matsuda F, Oe K (1997) Sigma phase embrittlement of duplex stainless steel weldment. Journal of the Society of Materials Science 46:592–596 ((in Japanese))

    Article  CAS  Google Scholar 

  25. Machado IF, Padilha AF (2000) Aging behaviour of 25Cr-17Mn high nitrogen duplex stainless steel. ISIJ Int 40:719–724. https://doi.org/10.2355/isi**ternational.40.719

    Article  CAS  Google Scholar 

  26. Nakade K, Ohe K, Kuroda T (2001) Precipitation behavior of sigma phase for reheated duplex stainless steel weld metal. Quarterly Journal of the Japan Welding Society 19:92–99 ((in Japanese))

    Article  CAS  Google Scholar 

  27. Nakade K, Kuroda T (2007) Precipitation mechanism of sigma phase in super duplex stainless steels. Journal of High Temperature Society 33:95–100 ((in Japanese))

    Article  CAS  Google Scholar 

  28. Hertzman S, Nilsson M, Jargelius-Pettersson R (1995) Influence of W and Cu on microstructure, mechanical properties and corrosion resistance in super duplex weld metals. Proc. Duplex Stainless Steels ‘94. Glasgow, Scotland. Paper 1, 2 (1995) 12pp

  29. Hertzman S, Nilsson J-O, Jargelius-Pettersson R, Huhtala T, Karlsson L, Nilsson M, Wilson A (1997) Microstructure-property relations of Mo- and W-alloyed super duplex stainless weld metals. Mater Sci Technol 13:604–613. https://doi.org/10.1179/mst.1997.13.7.604

    Article  CAS  Google Scholar 

  30. Nishimoto K, Saida K, Katsuyama O (2006) Prediction of sigma phase precipitation in super duplex stainless steel weldments. Welding in the World 50:13–28. https://doi.org/10.1007/BF03263429

    Article  CAS  Google Scholar 

  31. Magnabosco R (2009) Kinetics of sigma phase formation in a duplex stainless steel. Mater Res 12:321–327. https://doi.org/10.1590/S1516-14392009000300012

    Article  CAS  Google Scholar 

  32. Dos Santos DC, Magnabosco R (2016) Kinetic study to predict sigma phase formation in duplex stainless steels. Metallurgical and Materials Transactions Part A 47:1554–1565. https://doi.org/10.1007/s11661-016-3323-z

    Article  CAS  Google Scholar 

  33. Wan J, Ruan H, Wang J, Shi S (2018) The kinetic diagram of sigma phase and its precipitation hardening effect on 15Cr-2Ni duplex stainless steel. Mater Sci Eng 711:571–578. https://doi.org/10.1016/j.msea.2017.11.079

    Article  CAS  Google Scholar 

  34. Ogawa K, Osuki T (2015) Modeling of effects of temperature and alloying elements on sigma phase precipitation rate in duplex stainless steel. Quarterly Journal of the Japan Welding Society 33:55–61 ((in Japanese))

    Article  CAS  Google Scholar 

  35. Ogawa K, Osuki T (2020) Modelling of sigma phase precipitation in super duplex stainless steel weld metal. ISIJ Int 60:1016–1021. https://doi.org/10.2355/isi**ternational.ISIJINT-2019-537

    Article  CAS  Google Scholar 

  36. Hosseini VA, Högström M, Hurtig K, Valiente Bermejo MA, Stridh L, Karlsson L (2019) Wire-arc additive manufacturing of a duplex stainless steel: thermal cycle analysis and microstructure characterization. Welding in the World 63:975–987. https://doi.org/10.1007/s40194-019-00735-y

    Article  CAS  Google Scholar 

  37. Adhe KM, Kain V, Madangopal K, Gadiyar HS (1996) Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel. J Mater Eng Perform 5:500–506. https://doi.org/10.1007/BF02648847

    Article  CAS  Google Scholar 

  38. Turnbull A, Francis PE, Ryan MP, Orkney LP, Griffiths AJ, Hawkins B (2002) A novel approach to characterizing the corrosion resistance of super duplex stainless steel welds. Corrosion 58:1039–1048. https://doi.org/10.5006/1.3280793

    Article  CAS  Google Scholar 

  39. Park CJ, Rao VS, Kwon HS (2005) Effects of sigma phase on the initiation and propagation of pitting corrosion of duplex stainless steel. Corrosion 61:76–83. https://doi.org/10.5006/1.3278163

    Article  CAS  Google Scholar 

  40. Moura VS, Lima LD, Pardal JM, Kina AY, Corte RRA, Tavares SSM (2008) Influence of microstructure on the corrosion resistance of the duplex stainless steel UNS S31803. Mater Charact 59:1127–1132. https://doi.org/10.1016/j.matchar.2007.09.002

    Article  CAS  Google Scholar 

  41. Yousefieh M, Shamanian M, Saatchi A (2011) Influence of heat input in pulsed current GTAW process on microstructure and corrosion resistance of duplex stainless steel welds. J Iron Steel Res Int 18:65–69. https://doi.org/10.1016/S1006-706X(12)60036-3

    Article  CAS  Google Scholar 

  42. Santos DCD, Magnabosco R, Moura-Neto CD (2013) Influence of sigma phase formation on pitting corrosion of an aged UNS S31803 duplex stainless steel. Corrosion 69:900–911. https://doi.org/10.5006/0768

    Article  CAS  Google Scholar 

  43. Westin EM, Johansson MM, Pettersson RFA (2013) Effect of nitrogen-containing shielding and backing gas on the pitting corrosion resistance of welded lean duplex stainless steel LDX 2101. Welding in the World 57:467–476. https://doi.org/10.1007/s40194-013-0046-2

    Article  CAS  Google Scholar 

  44. Moteshakker A, Danaee I (2016) Microstructure and corrosion resistance of dissimilar weld-joints between duplex stainless steel 2205 and austenitic stainless steel 316L. J Mater Sci Technol 32:282–290. https://doi.org/10.1016/j.jmst.2015.11.021

    Article  CAS  Google Scholar 

  45. Hosseini VA, Hurtig K, Karlsson L (2017) Effect of multipass TIG welding on the corrosion resistance and microstructure of a super duplex stainless steel. Mater Corros 68:405–415. https://doi.org/10.1002/maco.201609102

    Article  CAS  Google Scholar 

  46. Westin EM, Olsson COA, Hertzman S (2008) Weld oxide formation on lean duplex stainless steel. Corros Sci 50:2620–2634. https://doi.org/10.1016/j.corsci.2008.06.024

    Article  CAS  Google Scholar 

  47. Westin EM, Hertzman S (2014) Element distribution in lean duplex stainless steel welds. Welding in the World 58(2):143–160. https://doi.org/10.1007/s40194-013-0108-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shotaro Yamashita.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission IX - Behaviour of Metals Subjected to Welding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, S., Ike, K., Yamasaki, K. et al. Relationship between ferrite–austenite phase transformation and precipitation behavior of sigma phase in super duplex stainless steel weldment. Weld World 66, 351–362 (2022). https://doi.org/10.1007/s40194-021-01239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01239-4

Keywords

Navigation