Log in

Modeling ultrasonic welding of polymers using an optimized artificial intelligence model using a gradient-based optimizer

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

In this study, a new hybrid artificial intelligence approach is proposed to model the ultrasonic welding of a polymeric material blend. The proposed approach is composed of an ensemble random vector functional link model (ERVFL) integrated with a gradient-based optimizer (GBO). First, welding experiments were conducted on acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) blends produced by the injection molding method. The experiments were designed according to the L27 orthogonal array considering three process factors (applied pressure, welding time, and vibration amplitude) and two responses (average temperature and joint strength). Then, the obtained experimental data were used to train the developed model. To verify the accuracy of the model, it was compared with standalone ERVFL in addition to two fine-tuned ERVFL models (ERVFL-SCA and ERVFL-MRFO) in which ERVFL is incorporated with sine cosine algorithm (SCA) or Manta ray foraging optimization (MRFO). The four models were evaluated using five statistical tools. ERVFL-GBO has the highest coefficient of determination and the lowest root mean square error, mean relative error mean absolute error, and coefficient of variance compared with other models which indicate its high accuracy over other tested models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Khoshaim AB, Elsheikh AH, Moustafa EB, Basha M, Showaib EA (2021) Experimental investigation on laser cutting of PMMA sheets: effects of process factors on kerf characteristics. J Mater Res Technol 11:235–246

    Article  CAS  Google Scholar 

  2. Singh R, Kumar R, Feo L, Fraternali F (2016) Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Composites Part B: Eng 101:77–86

    Article  CAS  Google Scholar 

  3. Eslami S, de Figueiredo MAV, Tavares PJ, Moreira PMGP (2018) Parameter optimisation of friction stir welded dissimilar polymers joints. Int J Advanced Manufact Technol 94:1759–1770

    Article  Google Scholar 

  4. Juhl TB, Bach D, Larson RG, Christiansen Jd, Jensen EA (2013) Predicting the laser weldability of dissimilar polymers. Polymer 54:3891–3897

    Article  CAS  Google Scholar 

  5. AbuShanab WS, Abd Elaziz M, Ghandourah EI, Moustafa EB, Elsheikh AH (2021) A new fine-tuned random vector functional link model using Hunger games search optimizer for modeling friction stir welding process of polymeric materials. J Mater Res Technol 14:1482–1493

    Article  CAS  Google Scholar 

  6. Juhl TB, Christiansen J d, Jensen EA (2013) Investigation on high strength laser welds of polypropylene and high-density polyethylene. J Appl Polymer Sci 129:2679–2685

    Article  CAS  Google Scholar 

  7. Singh R, Kumar R, Ahuja IPS Friction welding for functional prototypes of PA6 and ABS with Al powder reinforcement, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences

  8. Rezaee Hajideh M, Shapurgan O, Molla Ramzani N, Hasan Nejad E (2017) Friction stir welding of dissimilar poly methyl methacrylate and polycarbonate sheets. J Modern Processes Manufact Prod 6:35–46

    Google Scholar 

  9. Akué Asséko AC, Cosson B, Lafranche É, Schmidt F, Le Maoult Y (2016) Effect of the developed temperature field on the molecular interdiffusion at the interface in infrared welding of polycarbonate composites. Composites Part B: Eng 97:53–61

    Article  Google Scholar 

  10. Bindal T, Saxena RK, Pandey S (2021) Investigating friction spin welding of thermoplastics in shear joint configuration. SN Appl Sci 3:178

    Article  Google Scholar 

  11. Stokes VK (2003) Experiments on the induction welding of thermoplastics. Polymer Eng Sci 43:1523–1541

    Article  CAS  Google Scholar 

  12. Brassard D, Dubé M, Tavares JR (2019) Resistance welding of thermoplastic composites with a nanocomposite heating element. Composites Part B: Eng 165:779–784

    Article  CAS  Google Scholar 

  13. Jongbloed B, Teuwen J, Benedictus R, Villegas IF (2020) On differences and similarities between static and continuous ultrasonic welding of thermoplastic composites. Composites Part B: Eng 203:108466

    Article  CAS  Google Scholar 

  14. Zhang G-P, Li J-C, Liu Z-X, Wang P-C (2020) Application of ultrasonic welding to repair adhesively bonded short carbon fiber reinforced Nylon 6 composites. Int J Adhesion Adhesives 100:102603

    Article  CAS  Google Scholar 

  15. Palardy G, Shi H, Levy A, Le Corre S, Fernandez Villegas I (2018) A study on amplitude transmission in ultrasonic welding of thermoplastic composites. Composites Part A: Appl Sci Manufact 113:339–349

    Article  CAS  Google Scholar 

  16. Zongbo Z, **aodong W, Yi L, Zhenqiang Z, Liding W (2009) Study on heating process of ultrasonic welding for thermoplastics. J Thermoplastic Composite Mater 23:647–664

    Article  Google Scholar 

  17. Villegas IF (2019) Ultrasonic welding of thermoplastic composites, Frontiers in Materials, 6

  18. Balle F, Wagner G, Eifler D (2009) Ultrasonic metal welding of aluminium sheets to carbon fibre reinforced thermoplastic composites. Advanced Eng Mater 11:35–39

    Article  CAS  Google Scholar 

  19. Kumar R, Singh R (2020) Application of nano porous materials for energy conservation and storage. In: Hashmi S, Choudhury IA (eds) Encyclopedia of Renewable and Sustainable Materials. Elsevier, Oxford, pp 42–50

    Chapter  Google Scholar 

  20. Wu WI, Rezai P, Hsu HH, Selvaganapathy PR (2013) 1 - Materials and methods for the microfabrication of microfluidic biomedical devices, in: X. Li, Y. Zhou (Eds.) Microfluidic Devices for Biomedical Applications, Woodhead Publishing, pp. 3-62.

  21. Aid S, Eddhahak A, Ortega Z, Froelich D, Tcharkhtchi A (2017) Experimental study of the miscibility of ABS/PC polymer blends and investigation of the processing effect. J Appl Polymer Sci 134

  22. Bärwinkel S, Seidel A, Hobeika S, Hufen R, Mörl M, Altstädt V (2016) Morphology formation in PC/ABS blends during thermal processing and the effect of the viscosity ratio of blend partners. Materials 9:659

    Article  Google Scholar 

  23. Zhao YQ, Liu QJ, Guo RB, Chen FQ, Qu JP, ** G (2014) Morphology, Mechanical and thermal properties of recycled PC/ABS blends processed via vane extruder. Int Polym Process 29:207–213

    Article  CAS  Google Scholar 

  24. Shieu F-S, Wang B-H (1995) On the microstructure and tensile strength of PC/ABS polymer blend joints. J Polym Res 2:263–267

    Article  CAS  Google Scholar 

  25. Stokes VK (2000) The vibration welding of polycarbonate/acrylonitrile-butadiene-styrene blends to themselves and to other resins and blends. Polym Eng Sci 40:2175–2181

    Article  CAS  Google Scholar 

  26. Ülker A, Öztoprak N, Sayer S, Yeni C (2017) Optimization of welding parameters of hot plate welded PC/ABS blends by using the Taguchi experimental design method. J Elastomers Plastics 50:162–181

    Article  Google Scholar 

  27. Stokes VK, Conway KR (2001) A phenomenological study of the hot-tool welding of thermoplastics. 4. Weld strength data for several blends. Polymer 42:7477–7493

    Article  CAS  Google Scholar 

  28. Kumar S, Roy BS (2020) A comparative analysis between conventional tool and double-step shoulder tool for joining of acrylonitrile butadiene styrene and polycarbonate plate by using friction stir welding. Mater Today: Proc 26:2212–2215

    CAS  Google Scholar 

  29. Natesh M, Yun L, Arungalai Vendan S, Ramesh Kumar KA, Gao L, Niu X, Peng X, Garg A (2019) Experimental and numerical procedure for studying strength and heat generation responses of ultrasonic welding of polymer blends. Measurement 132:1–10

    Article  Google Scholar 

  30. Chinnadurai T, Prabaharan N, Raj NM, Pandian MK (2018) Ultrasonically welded and non-welded polypropylene and PC-ABS blend thermal analysis. J Thermal Analysis Calorimetry 132:1813–1824

    Article  CAS  Google Scholar 

  31. Chinnadurai T, Arungalai Vendan S (2017) Thermal and structural analysis of ultrasonic-welded PC/ABS blend for automobile applications. J Thermal Analysis Calorimetry 127:1995–2003

    Article  CAS  Google Scholar 

  32. Qiu J, Zhang G, Sakai E, Liu W, Zang L (2020) Thermal welding by the third phase between polymers: a review for ultrasonic weld technology developments. Polymers 12:759

    Article  CAS  Google Scholar 

  33. Showaib EA, Elsheikh AH (2020) Effect of surface preparation on the strength of vibration welded butt joint made from PBT composite. Polymer Testing 83:106319

    Article  CAS  Google Scholar 

  34. Elsheikh AH, Deng W, Showaib EA (2020) Improving laser cutting quality of polymethylmethacrylate sheet: experimental investigation and optimization. J Mater Res Technol 9:1325–1339

    Article  CAS  Google Scholar 

  35. Jedrasiak P, Shercliff HR (2018) Finite element analysis of heat generation in dissimilar alloy ultrasonic welding. Mater Design 158:184–197

    Article  CAS  Google Scholar 

  36. Satpathy MP, Sahoo SK (2017) Experimental and numerical studies on ultrasonic welding of dissimilar metals. Int J Advanced Manufact Technol 93:2531–2545

    Article  Google Scholar 

  37. Elsheikh AH, Guo J, Huang Y, Ji J, Lee K-M (2018) Temperature field sensing of a thin-wall component during machining: numerical and experimental investigations. Int J Heat Mass Transfer 126:935–945

    Article  Google Scholar 

  38. Salman K h, Elsheikh AH, Ashham M, Ali MKA, Rashad M, Haiou Z (2019) Effect of cutting parameters on surface residual stresses in dry turning of AISI 1035 alloy. J Brazilian Soc Mech Sci Eng 41:349

    Article  Google Scholar 

  39. Elsheikh AH, Shanmugan S, Muthuramalingam T, Thakur AK, Essa FA, Ibrahim AMM, Mosleh AO (2021) A comprehensive review on residual stresses in turning, Advances in Manufacturing

  40. Javadi Y, Sadeghi S, Najafabadi MA (2014) Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding. Mater Design 55:27–34

    Article  CAS  Google Scholar 

  41. Siddani JK, Srinvas C, Madan N Mohan R, Srinvias Naik L (2020) Investigation of process parameters of ultrasonic welding of copper using Taguchi and grey relational analysis, Materials Today: Proceedings

  42. Kalyan Kumar R, Omkumar M (2020) Ultrasonic welding of GF/PA6T composites: experimental investigation and process optimization, Materials Today: Proceedings

  43. Elsheikh AH, Sharshir SW, Abd Elaziz M, Kabeel AE, Guilan W, Haiou Z (2019) Modeling of solar energy systems using artificial neural network: a comprehensive review. Solar Energy 180:622–639

    Article  Google Scholar 

  44. Shehabeldeen TA, Elaziz MA, Elsheikh AH, Zhou J (2019) Modeling of friction stir welding process using adaptive neuro-fuzzy inference system integrated with harris hawks optimizer. J Mater Res Technol 8:5882–5892

    Article  CAS  Google Scholar 

  45. Elsheikh, T.A. Shehabeldeen, J. Zhou, E. Showaib, MAE (2020) Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer. J Intell Manufact

  46. Khoshaim AB, Elsheikh AH, Moustafa EB, Basha M, Mosleh AO (2021) Prediction of residual stresses in turning of pure iron using artificial intelligence-based methods. J Mater Res Technol

  47. Li Y, Lee TH, Wang C, Wang K, Tan C, Banu M, Hu SJ (2018) An artificial neural network model for predicting joint performance in ultrasonic welding of composites. Procedia CIRP 76:85–88

    Article  Google Scholar 

  48. Li Y, Yu B, Wang B, Lee TH, Banu M (2020) Online quality inspection of ultrasonic composite welding by combining artificial intelligence technologies with welding process signatures. Mater Design 194:108912

    Article  CAS  Google Scholar 

  49. Mongan PG, Hinchy EP, O’Dowd NP, McCarthy CT (2020) Optimisation of ultrasonically welded joints through machine learning. Procedia CIRP 93:527–531

    Article  Google Scholar 

  50. Satpathy MP, Moharana BR, Dewangan S, Sahoo SK (2015) Modeling and optimization of ultrasonic metal welding on dissimilar sheets using fuzzy based genetic algorithm approach. Eng Sci Technol Int J 18:634–647

    Google Scholar 

  51. Oliva D, Elaziz MA, Elsheikh AH, Ewees AA (2019) A review on meta-heuristics methods for estimating parameters of solar cells. J Power Sources 435:126683

    Article  CAS  Google Scholar 

  52. Elsheikh AH, Abd Elaziz M (2019) Review on applications of particle swarm optimization in solar energy systems. Int J Environ Sci Technol 16:1159–1170

    Article  Google Scholar 

  53. Abd Elaziz M, Elsheikh AH, Oliva D, Abualigah L, Lu S, Ewees AA (2021) Advanced metaheuristic techniques for mechanical design problems: review, archives of computational methods in engineering

  54. Elsheikh AH, Muthuramalingam T, Abd Elaziz M, Ibrahim AMM, Showaib EA (2021) Minimization of fume emissions in laser cutting of polyvinyl chloride sheets using genetic algorithm. Int J Environ Sci Technol

  55. Shehabeldeen TA, Elaziz MA, Elsheikh AH, Hassan OF, Yin Y, Ji X, Shen X, Zhou J (2020) A novel method for predicting tensile strength of friction stir welded AA6061 aluminium alloy joints based on hybrid random vector functional link and Henry gas solubility optimization. IEEE Access 8:79896–79907

    Article  Google Scholar 

  56. Zayed ME, Zhao J, Li W, Elsheikh AH, Elaziz MA, Yousri D, Zhong S, Mingxi Z (2021) Predicting the performance of solar dish Stirling power plant using a hybrid random vector functional link/chimp optimization model. Solar Energy 222:1–17

    Article  Google Scholar 

  57. Essa FA, Abd Elaziz M, Elsheikh AH (2020) An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer. Appl Thermal Eng 170:115020

    Article  Google Scholar 

  58. Elmaadawy K, Elaziz MA, Elsheikh AH, Moawad A, Liu B, Lu S (2021) Utilization of random vector functional link integrated with manta ray foraging optimization for effluent prediction of wastewater treatment plant. J Environ Manag 298:113520

    Article  CAS  Google Scholar 

  59. Babikir HA, Elaziz MA, Elsheikh AH, Showaib EA, Elhadary M, Wu D, Liu Y (2019) Noise prediction of axial piston pump based on different valve materials using a modified artificial neural network model. Alexandria Eng J 58:1077–1087

    Article  Google Scholar 

  60. Abd Elaziz M, Senthilraja S, Zayed ME, Elsheikh AH, Mostafa RR, Lu S (2021) A new random vector functional link integrated with mayfly optimization algorithm for performance prediction of solar photovoltaic thermal collector combined with electrolytic hydrogen production system. Appl Thermal Eng 193:117055

    Article  CAS  Google Scholar 

  61. Abd Elaziz M, Shehabeldeen TA, Elsheikh AH, Zhou J, Ewees AA, Al-qaness MAA (2020) Utilization of random vector functional link integrated with marine predators algorithm for tensile behavior prediction of dissimilar friction stir welded aluminum alloy joints. J Mater Res Technol 9:11370–11381

    Article  CAS  Google Scholar 

  62. Elsheikh AH, Elaziz MA, Das SR, Muthuramalingam T, Lu S (2021) A new optimized predictive model based on political optimizer for eco-friendly MQL-turning of AISI 4340 alloy with nano-lubricants. J Manufact Processes 67:562–578

    Article  Google Scholar 

  63. Zayed ME, Zhao J, Li W, Elsheikh AH, Elaziz MA (2021) A hybrid adaptive neuro-fuzzy inference system integrated with equilibrium optimizer algorithm for predicting the energetic performance of solar dish collector. Energy 235:121289

    Article  Google Scholar 

  64. Elaziz MA, Elsheikh AH, Sharshir SW (2019) Improved prediction of oscillatory heat transfer coefficient for a thermoacoustic heat exchanger using modified adaptive neuro-fuzzy inference system. Int J Refrigeration 102:47–54

    Article  Google Scholar 

  65. Essa FA, Abd Elaziz M, Elsheikh AH (2020) Prediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimization. Process Safety Environ Protect 144:322–329

    Article  CAS  Google Scholar 

  66. Levy A, Le Corre S, Fernandez Villegas I (2014) Modeling of the heating phenomena in ultrasonic welding of thermoplastic composites with flat energy directors. J Mater Process Technol 214:1361–1371

    Article  Google Scholar 

  67. Tutunjian S, Dannemann M, Fischer F, Eroğlu O, Modler N (2019) A control method for the ultrasonic spot welding of fiber-reinforced thermoplastic laminates through the weld-power time derivative. J Manufact Mater Process 3:1

    CAS  Google Scholar 

  68. Ahmadein M, Elsheikh AH, Alsaleh NA (2021) Modeling of cooling and heat conduction in permanent mold casting process. Alexandria Eng J

  69. Elsheikh AH, Guo J, Lee K-M (2019) Thermal deflection and thermal stresses in a thin circular plate under an axisymmetric heat source. J Thermal Stresses 42:361–373

    Article  Google Scholar 

  70. Alhamdoosh M, Wang D (2014) Fast decorrelated neural network ensembles with random weights. Inform Sci 264:104–117

    Article  Google Scholar 

  71. Elsheikh AH, Abd Elaziz M, Ramesh B, Egiza M, Al-qaness MAA (2021) Modeling of drilling process of GFRP composite using a hybrid random vector functional link network/parasitism-predation algorithm. J Mater Res Technol 14:298–311

    Article  CAS  Google Scholar 

  72. Abd Elaziz M, Essa FA, Elsheikh AH (2021) Utilization of ensemble random vector functional link network for freshwater prediction of active solar stills with nanoparticles. Sustainable Energy Technol Assessments 47:101405

    Article  Google Scholar 

  73. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: a new metaheuristic optimization algorithm. Inform Sci 540:131–159

    Article  Google Scholar 

  74. Paul SC, Panda B, Huang Y, Garg A, Peng X (2018) An empirical model design for evaluation and estimation of carbonation depth in concrete. Measurement 124:205–210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar H. Elsheikh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsheikh, A.H., Abd Elaziz, M. & Vendan, A. Modeling ultrasonic welding of polymers using an optimized artificial intelligence model using a gradient-based optimizer. Weld World 66, 27–44 (2022). https://doi.org/10.1007/s40194-021-01197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01197-x

Keywords

Navigation