Log in

Microstructure Image Classification: A Classifier Combination Approach Using Fuzzy Integral Measure

  • Technical Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

In recent times, machine learning-based methods have gained popularity in various materials science applications including microstructure image classification. This paper explores the use of classifier combination approaches for classifying the microstructure images with an improved accuracy. Classifier combination methods have been recognized as a state-of-the-art approach to enhance the performance of many challenging image classification tasks. Ensemble methods are used to increase the predictive performance of a learning system by combining the predictive performances of several base learners. In our proposed model, the features of three-class microstructural images are extracted using the rotational local tetra pattern feature descriptor. These features are separately fed to three different classifiers, namely support vector machine, random forest, and K nearest neighbor. Then, a classifier combination approach based on the confidence scores provided by these classifiers using fuzzy measures and fuzzy integrals is applied for the image recognition purpose. Unlike other straightforward classical classifier combination methods, this method nonlinearly aggregates the objective evidences in terms of a fuzzy membership function, with the subjective assessments of the relative importance of different classifiers. The proposed method has also been compared with many standard classifier combination approaches commonly found in the literature. The experimental results support the effectiveness of fuzzy combination to produce higher classification accuracy than that of the best base classifiers and some popular classifier combination methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The dataset of the micrograph considered here is publicly available at http://uhcsdb.materials.cmu.edu

Code Availability

The source code for our method is our customized code written in MATLAB 2018b.

References

  1. Clemens H, Mayer S, Scheu C (2017) Microstructure and properties of engineering materials. Neutrons Synchrotron Radiat Eng Mater Sci 66:1–20

    Google Scholar 

  2. Haralick RM, Shanmugam K, Dinstein H (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621. https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  3. DeCost BL (2016) Microstructure representations: applied computer vision methods for microstructure characterization. PhD diss., Carnegie Mellon University

  4. Gazder AA, Al-Harbi F, Spanke HT, Mitchell DRG, Pereloma EV (2014) A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy. Ultramicroscopy 147:114–132

    Article  CAS  Google Scholar 

  5. DeCost BL, Lei B, Francis T, Holm EA (2019) High throughput quantitative metallography for complex microstructures using deep learning: a case study in ultrahigh carbon steel. Microsc Microanal 25(1):21–29. https://doi.org/10.1017/S1431927618015635

    Article  CAS  Google Scholar 

  6. Azimi SM, Britz D, Engstler M, Fritz M, Mücklich F (2018) Advanced steel microstructural classification by deep learning methods. Sci Rep 8(1):1–14

    Article  CAS  Google Scholar 

  7. Chen D, Guo D, Liu S, Liu F (2020) Microstructure instance segmentation from aluminum alloy metallographic image using different loss functions. Symmetry 12(4):639. https://doi.org/10.3390/sym12040639

    Article  CAS  Google Scholar 

  8. Ma B, Ban X, Huang H, Chen Y, Liu W, Zhi Y (2018) Deep learning-based image segmentation for al-la alloy microscopic images. Symmetry 10(4):107. https://doi.org/10.3390/sym10040107

    Article  Google Scholar 

  9. Panda A, Naskar R, Pal S (2019) Deep learning approach for segmentation of plain carbon steel microstructure images. IET Image Process 13(9):1516–1524. https://doi.org/10.1049/iet-ipr.2019.0404

    Article  Google Scholar 

  10. Gajalakshmi K, Palanivel S, Nalini NJ, Saravanan S (2018) Automatic classification of cast iron grades using support vector machine. Optik 157:724–732

    Article  CAS  Google Scholar 

  11. Gola J, Webel J, Britz D, Guitar A, Staudt T, Winter M, Mücklich F (2019) Objective microstructure classification by support vector machine (SVM) using a combination of morphological parameters and textural features for low carbon steels. Comput Mater Sci 16:186–196. https://doi.org/10.1016/j.commatsci.2019.01.006

    Article  CAS  Google Scholar 

  12. Gola J, Britz D, Staudt T, Winter M, Schneider AS, Ludovici M, Mücklich F (2018) Advanced microstructure classification by data mining methods. Comput Mater Sci 148:324–335. https://doi.org/10.1016/j.commatsci.2018.03.004

    Article  CAS  Google Scholar 

  13. DeCost BL, Holm EA (2015) A computer vision approach for automated analysis and classification of microstructural image data. Comput Mater Sci 110:126–133. https://doi.org/10.1016/j.commatsci.2015.08.011

    Article  Google Scholar 

  14. Arivazhagan S, Tracia JJ, Selvakumar N (2019) Classification of steel microstructures using modified alternate local ternary pattern. Mater Res Express 6(9). https://doi.org/10.1088/2053-1591/ab2d83

    Article  Google Scholar 

  15. Chowdhury A, Kautz E, Yener B, Lewis D (2016) Image driven machine learning methods for microstructure recognition. Comput Mater Sci 123:176–187. https://doi.org/10.1016/j.commatsci.2016.05.034

    Article  Google Scholar 

  16. DeCost BL, Francis T, Holm EA (2017) Exploring the microstructure manifold: image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater 133:30–40. https://doi.org/10.1016/j.actamat.2017.05.014

    Article  CAS  Google Scholar 

  17. Ling J, Hutchinson M, Antono E, DeCost B, Holm EA, Meredig B (2017) Building data-driven models with microstructural images: generalization and interpretability. Mater Discov 10:19–28. https://doi.org/10.1016/j.md.2018.03.002

    Article  Google Scholar 

  18. Kitahara AR, Holm EA (2018) Microstructure cluster analysis with transfer learning and unsupervised learning. Integr Mater Manuf Innov 7(3):148–156

    Article  Google Scholar 

  19. Ren F, Li Y, Hu M (2018) Multi-classifier ensemble based on dynamic weights. Multimed Tools Appl 77(16):21083–21107. https://doi.org/10.1007/s11042-017-5480-5

    Article  Google Scholar 

  20. Nock K, Gilmour E (2020) Fuzzy aggregation for multimodal remote sensing classification. In: 2020 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1–7. https://doi.org/10.1109/FUZZ48607.2020.9177691

  21. Wang Z, Wang R, Gao J, Gao Z, Liang Y (2020) Fault recognition using an ensemble classifier based on Dempster–Shafer theory. Pattern Recognit. https://doi.org/10.1016/j.patcog.2019.107079

    Article  Google Scholar 

  22. Mukhopadhyay A, Singh PK, Sarkar R, Nasipuri M (2018) A study of different classifier combination approaches for handwritten Indic Script Recognition. J Imaging. https://doi.org/10.3390/jimaging4020039

    Article  Google Scholar 

  23. Keller JM, Gader P, Tahani H, Chiang J-H, Mohamed M (1994) Advances in fuzzy integration for pattern recognition. Fuzzy Sets Syst 65(2):273–283

    Article  Google Scholar 

  24. Cho S-B, Kim JH (1995) Combining multiple neural networks by fuzzy integral for robust classification. IEEE Trans Syst Man Cybern 25(2):380–384. https://doi.org/10.1109/21.364825

    Article  Google Scholar 

  25. Banerjee A, Singh PK, Sarkar R (2020) Fuzzy integral based CNN classifier fusion for 3D skeleton action recognition. IEEE Trans Circuits Syst Video Technol. https://doi.org/10.1109/TCSVT.2020.3019293

    Article  Google Scholar 

  26. Emadi M, Rahgozar M (2020) Twitter sentiment analysis using fuzzy integral classifier fusion. J Inf Sci 46(2):226–242. https://doi.org/10.1177/0165551519828627

    Article  Google Scholar 

  27. Sarkar SS, Sheikh KH, Mahanty A, Mali K, Ghosh A, Sarkar R (2021) A harmony search-based wrapper-filter feature selection approach for microstructural image classification. Integr Mater Manuf Innov 66:1–19

    Article  Google Scholar 

  28. Feng H, X Li, T Fan, Y Chen (2006) Some characteristics of fuzzy integrals as a multiple classifiers fusion method. In: Advances in machine learning and cybernetics. Springer, Berlin, pp 1014–1024

  29. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 29(1):51–59. https://doi.org/10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  30. Rybintsev A (2017) Age estimation from a face image in a selected gender-race group based on ranked local binary patterns. Complex Intell Syst 3(2):93–104. https://doi.org/10.1007/s40747-017-0035-y

    Article  Google Scholar 

  31. Ruichek Y (2019) Attractive-and-repulsive center-symmetric local binary patterns for texture classification. Eng Appl Artif Intell 78:158–172. https://doi.org/10.1016/j.engappai.2018.11.011

    Article  Google Scholar 

  32. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  Google Scholar 

  33. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886. https://doi.org/10.1109/TIP.2012.2188809

    Article  Google Scholar 

  34. Tan X, Tiggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650. https://doi.org/10.1109/TIP.2010.2042645

    Article  Google Scholar 

  35. Zhang B et al (2009) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544. https://doi.org/10.1109/TIP.2009.2035882

    Article  Google Scholar 

  36. Xu L, Krzyzak A, Suen CY (1992) Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans Syst Man Cybernet 22(3):418–435

    Article  Google Scholar 

  37. Sugeno M (1993) Fuzzy measures and fuzzy integrals—a survey. In: Readings in fuzzy sets for intelligent system. Morgan Kaufmann, pp 251–257. https://doi.org/10.1016/B978-1-4832-1450-4.50027-4

  38. Murofushi T, Sugeno M (1989) An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets Syst 29(2):201–227

    Article  Google Scholar 

  39. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37. https://doi.org/10.1109/34.824819

    Article  Google Scholar 

  40. Pham TD (2002) Combination of multiple classifiers using adaptive fuzzy integral. In: Proceedings 2002 IEEE international conference on artificial intelligence systems (ICAIS 2002). IEEE, pp 50–55. https://doi.org/10.1109/ICAIS.2002.1048051

  41. Nguyen XT, Garg H (2019) Exponential similarity measures for pythagorean fuzzy sets and their applications to pattern recognition and decision-making process. Complex Intell Syst 5(2):217–228. https://doi.org/10.1007/s40747-019-0105-4

    Article  Google Scholar 

  42. Abdullah L, Goh P (2019) Decision making method based on pythagorean fuzzy sets and its application to solid waste management. Complex Intell Syst 5(2):185–198

    Article  Google Scholar 

  43. DeCost BL, Hecht MD, Francis T, Webler BA, Picard YN, Holm EA (2017) UHCSDB: ultrahigh carbon steel micrograph database. Integr Mater Manuf Innov 6(2):197–205. https://doi.org/10.1007/s40192-017-0097-0

    Article  Google Scholar 

  44. Hoque Na M, Singh DKB (2018) EFS-MI: an ensemble feature selection method for classification. Complex Intell Syst 4(2):105–118. https://doi.org/10.1007/s40747-017-0035-y

    Article  Google Scholar 

  45. Van Erp M, Vuurpijl L, Schomaker L (2002) An overview and comparison of voting methods for pattern recognition. In: Proceedings eighth international workshop on frontiers in handwriting recognition. IEEE, pp 195–200. https://doi.org/10.1109/IWFHR.2002.1030908.40747-017-0035-y

Download references

Funding

The authors declare that no funding support from any organization or agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shib Sankar Sarkar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S.S., Ansari, M.S., Mahanty, A. et al. Microstructure Image Classification: A Classifier Combination Approach Using Fuzzy Integral Measure. Integr Mater Manuf Innov 10, 286–298 (2021). https://doi.org/10.1007/s40192-021-00210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-021-00210-x

Keywords

Navigation