Log in

Hearing Preservation Cochlear Implantation: a Review of Audiologic Benefits, Surgical Success Rates, and Variables That Impact Success

  • Otology (E Truy, Section Editor)
  • Published:
Current Otorhinolaryngology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The objectives of this review are as follows: (1) examine the audiologic benefits of hearing preservation, (2) review rates of successful hearing preservation, and (3) analyze variables that impact hearing preservation success.

Recent Findings

Hearing preservation has been shown to confer the following audiologic benefits: better speech understanding in complex listening environments, superior sound localization, and improved music appreciation. There is a notable lack of standardized criteria for reporting of hearing preservation outcomes—this leads to considerable heterogeneity across studies. Rates of functional (i.e., aidable) hearing preservation generally range between 50 and 90%. Studies demonstrate higher preservation rates and more durable hearing outcomes with shorter, straight electrode arrays.

Summary

With advances in CI technology and surgical techniques, residual hearing can be preserved after CI surgery in the majority of patients. Cochlear implant recipients with preserved hearing demonstrate better speech understanding, sound localization, and improved music appreciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gantz BJ, Turner CW. Combining acoustic and electrical hearing. Laryngoscope. 2003;113(10):1726–30.

    Article  PubMed  Google Scholar 

  2. Gantz BJ, Turner C. Combining acoustic and electrical speech processing: Iowa/nucleus hybrid implant. Acta Otolaryngol. 2004;124(4):344–7.

    Article  PubMed  Google Scholar 

  3. Turner CW, Gantz BJ, Vidal C, Behrens A, Henry BA. Speech recognition in noise for cochlear implant listeners: benefits of residual acoustic hearing. J Acoust Soc Am. 2004;115(4):1729–35.

    Article  PubMed  Google Scholar 

  4. Adunka OF, Dillon MT, Adunka MC, King ER, Pillsbury HC, Buchman CA. Hearing preservation and speech perception outcomes with electric-acoustic stimulation after 12 months of listening experience. Laryngoscope. 2013;123(10):2509–15.

    PubMed  Google Scholar 

  5. Dillon MT, Buss E, Adunka OF, Buchman CA, Pillsbury HC. Influence of test condition on speech perception with electric-acoustic stimulation. Am J Audiol. 2015;24(4):520–8.

    Article  PubMed  Google Scholar 

  6. •• Gifford RH, Dorman MF, Skarzynski H, et al. Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments. Ear Hear. 2013;34(4):413–25. Demonstrates EAS listening confers speech perception benefit.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dorman MF, Gifford R, Lewis K, et al. Word recognition following implantation of conventional and 10-mm hybrid electrodes. Audiol Neurootol. 2009;14(3):181–9.

    Article  PubMed  Google Scholar 

  8. •• Rader T, Fastl H, Baumann U. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field. Ear Hear. 2013;34(3):324–32. Demonstrates EAS listening confers speech perception benefit.

    Article  PubMed  Google Scholar 

  9. •• Gifford RH, Grantham DW, Sheffield SW, Davis TJ, Dwyer R, Dorman MF. Localization and interaural time difference (ITD) thresholds for cochlear implant recipients with preserved acoustic hearing in the implanted ear. Hear Res. 2014;312:28–37. Demonstrates EAS listening confers localization benefit.

    Article  PubMed  PubMed Central  Google Scholar 

  10. •• Dunn CC, Perreau A, Gantz B, Tyler RS. Benefits of localization and speech perception with multiple noise sources in listeners with a short-electrode cochlear implant. J Am Acad Audiol. 2010;21(1):44–51. Demonstrates EAS listening confers speech perception and localization benefit.

    Article  PubMed  PubMed Central  Google Scholar 

  11. •• Gifford RH, Davis TJ, Sunderhaus LW, et al. Combined electric and acoustic stimulation with hearing preservation: effect of cochlear implant low-frequency cutoff on speech understanding and perceived listening difficulty. Ear Hear. 2017;38(5):539–553. Demonstrates EAS listening confers speech perception benefit. Further, allowing for greater spectral overlap between electric and acoustic hearing resulted in better outcomes

  12. •• Dorman MF, Gifford RH. Combining acoustic and electric stimulation in the service of speech recognition. Int J Audiol. 2010;49(12):912–9. Demonstrates EAS listening confers speech perception benefit.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gifford RH, Dorman MF, Shallop JK, Sydlowski SA. Evidence for the expansion of adult cochlear implant candidacy. Ear Hear. 2010;31(2):186–94.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cosetti MK, Friedmann DR, Zhu BZ, et al. The effects of residual hearing in traditional cochlear implant candidates after implantation with a conventional electrode. Otol Neurotol. 2013;34(3):516–21.

    Article  PubMed  Google Scholar 

  15. • Carlson ML, Driscoll CL, Gifford RH, et al. Implications of minimizing trauma during conventional cochlear implantation. Otol Neurotol. 2011;32(6):962–8. Hearing preservation surgical techniques confers speech recognition benefit even if residual hearing is lost.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dalbert A, Huber A, Baumann N, Veraguth D, Roosli C, Pfiffner F. Hearing preservation after cochlear implantation may improve long-term word perception in the electric-only condition. Otol Neurotol. 2016;37(9):1314–9.

    Article  PubMed  Google Scholar 

  17. D’Elia A, Bartoli R, Giagnotti F, Quaranta N. The role of hearing preservation on electrical thresholds and speech performances in cochlear implantation. Otol Neurotol. 2012;33(3):343–7.

    Article  PubMed  Google Scholar 

  18. •• Plant K, Babic L. Utility of bilateral acoustic hearing in combination with electrical stimulation provided by the cochlear implant. Int J Audiol. 2016;55 Suppl 2:S31–8. Demonstrates EAS listening confers localization benefit.

    Article  PubMed  Google Scholar 

  19. •• Loiselle LH, Dorman MF, Yost WA, Gifford RH. Sound source localization by hearing preservation patients with and without symmetrical low-frequency acoustic hearing. Audiol Neurootol. 2015;20(3):166–71. Demonstrates EAS listening confers localization benefit.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gifford RH, Driscoll CL, Davis TJ, Fiebig P, Micco A, Dorman MF. A within-subject comparison of bimodal hearing, bilateral cochlear implantation, and bilateral Cochlear implantation with bilateral hearing preservation: high-performing patients. Otol Neurotol. 2015;36(8):1331–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gifford RH, Dorman MF, Brown CA. Psychophysical properties of low-frequency hearing: implications for perceiving speech and music via electric and acoustic stimulation. Adv Otorhinolaryngol. 2010;67:51–60.

    PubMed  Google Scholar 

  22. Gfeller K, Turner C, Oleson J, et al. Accuracy of cochlear implant recipients on pitch perception, melody recognition, and speech reception in noise. Ear Hear. 2007;28(3):412–23.

    Article  PubMed  Google Scholar 

  23. Gfeller KE, Olszewski C, Turner C, Gantz B, Oleson J. Music perception with cochlear implants and residual hearing. Audiol Neurootol. 2006;11 Suppl 1:12–5.

    Article  PubMed  Google Scholar 

  24. Driscoll VD, Welhaven AE, Gfeller K, Oleson J, Olszewski CP. Music perception of adolescents using electroacoustic hearing. Otol Neurotol. 2016;37(2):e141–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dillon MT, Buss E, Pillsbury HC, Adunka OF, Buchman CA, Adunka MC. Effects of hearing aid settings for electric-acoustic stimulation. J Am Acad Audiol. 2014;25(2):133–40.

    Article  PubMed  Google Scholar 

  26. Anagiotos A, Hamdan N, Lang-Roth R, et al. Young age is a positive prognostic factor for residual hearing preservation in conventional cochlear implantation. Otol Neurotol. 2015;36(1):28–33.

    PubMed  Google Scholar 

  27. Erixon E, Kobler S, Rask-Andersen H. Cochlear implantation and hearing preservation: results in 21 consecutively operated patients using the round window approach. Acta Otolaryngol. 2012;132(9):923–31.

    Article  PubMed  Google Scholar 

  28. Tamir S, Ferrary E, Borel S, Sterkers O, Bozorg Grayeli A. Hearing preservation after cochlear implantation using deeply inserted flex atraumatic electrode arrays. Audiol Neurootol. 2012;17(5):331–7.

    Article  PubMed  Google Scholar 

  29. Skarzynski H, Lorens A, Matusiak M, Porowski M, Skarzynski PH, James CJ. Partial deafness treatment with the nucleus straight research array cochlear implant. Audiol Neurootol. 2012;17(2):82–91.

    Article  PubMed  Google Scholar 

  30. • Suhling MC, Majdani O, Salcher R, et al. The impact of electrode array length on hearing preservation in cochlear implantation. Otol Neurotol. 2016;37(8):1006–15. Shorter electrodes are better able to preserve hearing when compared to longer electrodes.

    Article  PubMed  Google Scholar 

  31. Jurawitz MC, Buchner A, Harpel T, et al. Hearing preservation outcomes with different cochlear implant electrodes: nucleus(R) hybrid-L24 and nucleus freedom CI422. Audiol Neurootol. 2014;19(5):293–309.

    Article  CAS  PubMed  Google Scholar 

  32. Helbig S, Adel Y, Rader T, Stover T, Baumann U. Long-term hearing preservation outcomes after Cochlear implantation for electric-acoustic stimulation. Otol Neurotol. 2016;37(9):e353–9.

    Article  PubMed  Google Scholar 

  33. • Wanna GB, O’Connell BP, Francis DO, et al. Predictive factors for short- and long-term hearing preservation in cochlear implantation with conventional-length electrodes. Laryngoscope. 2017. Lateral wall electrodes, round window approaches, and oral steroids are predictive of better long-term hearing preservation.

  34. Van Abel KM, Dunn CC, Sladen DP, et al. Hearing preservation among patients undergoing cochlear implantation. Otol Neurotol. 2015;36(3):416–21.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Carlson ML, Patel NS, Tombers NM, et al. Hearing preservation in pediatric Cochlear implantation. Otol Neurotol. 2017;38(6):e128–33.

    Article  PubMed  Google Scholar 

  36. Brown KD, Melton MF, Shonfield H, Kraskin M, Wolf J. Preserved low-frequency hearing following 20-mm cochlear implantation. Otol Neurotol. 2015;36(2):240–3.

    Article  PubMed  Google Scholar 

  37. Gantz BJ, Turner C, Gfeller KE. Acoustic plus electric speech processing: preliminary results of a multicenter clinical trial of the Iowa/nucleus hybrid implant. Audiol Neurootol. 2006;11(Suppl 1):63–8.

    Article  PubMed  Google Scholar 

  38. Gantz BJ, Hansen MR, Turner CW, Oleson JJ, Reiss LA, Parkinson AJ. Hybrid 10 clinical trial: preliminary results. Audiol Neurootol. 2009;14 Suppl 1:32–8.

    Article  PubMed  Google Scholar 

  39. Gantz BJ, Dunn C, Oleson J, Hansen M, Parkinson A, Turner C. Multicenter clinical trial of the nucleus Hybrid S8 cochlear implant: final outcomes. Laryngoscope. 2016;126(4):962–73.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gantz BJ, Dunn C, Walker E, Van Voorst T, Gogel S, Hansen M. Outcomes of adolescents with a short electrode cochlear implant with preserved residual hearing. Otol Neurotol. 2016;37(2):e118–25.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Skarzynski H, van de Heyning P, Agrawal S, et al. Towards a consensus on a hearing preservation classification system. Acta Otolaryngol Suppl. 2013;564:3–13.

    Article  Google Scholar 

  42. Hunter JB, Gifford RH, Wanna GB, et al. Hearing preservation outcomes with a mid-scala electrode in cochlear implantation. Otol Neurotol. 2016;37(3):235–40.

    Article  PubMed  Google Scholar 

  43. Gantz BJ, Dunn CC, Oleson J, Hansen MR. Acoustic plus electric speech processing: long-term results. Laryngoscope. 2017.

  44. • Wanna GB, Noble JH, Gifford RH, et al. Impact of intrascalar electrode location, electrode type, and angular insertion depth on residual hearing in cochlear implant patients: preliminary results. Otol Neurotol. 2015;36(8):1343–8. Hearing preservation is not possible for electrode arrays that translocate cochlear partitions.

    Article  PubMed  Google Scholar 

  45. O’Connell BP, Holder JT, Dwyer RT, et al. Intra- and postoperative electrocochleography may be predictive of final electrode position and postoperative hearing preservation. Front Neurosci. 2017;11:291.

    Article  PubMed  PubMed Central  Google Scholar 

  46. O’Connell BP, Hunter JB, Haynes DS, et al. Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes. Laryngoscope. 2017;127(10):2352–2357.

  47. O’Connell BP, Cakir A, Hunter JB, et al. Electrode location and angular insertion depth are predictors of audiologic outcomes in cochlear implantation. Otol Neurotol. 2016;37(8):1016–23.

    Article  PubMed  PubMed Central  Google Scholar 

  48. van der Marel KS, Briaire JJ, Wolterbeek R, Snel-Bongers J, Verbist BM, Frijns JH. Diversity in cochlear morphology and its influence on cochlear implant electrode position. Ear Hear. 2014;35(1):e9–20.

    Article  PubMed  Google Scholar 

  49. Buchner A, Illg A, Majdani O, Lenarz T. Investigation of the effect of cochlear implant electrode length on speech comprehension in quiet and noise compared with the results with users of electro-acoustic-stimulation, a retrospective analysis. PLoS One. 2017;12(5):e0174900. Speech recognition scores are compromised when the apical region of the cochlea can not be stimulated with either electric or acoustic modalities.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Buchman CA, Dillon MT, King ER, Adunka MC, Adunka OF, Pillsbury HC. Influence of cochlear implant insertion depth on performance: a prospective randomized trial. Otol Neurotol. 2014;35(10):1773–9.

    Article  PubMed  Google Scholar 

  51. Rader T, Doge J, Adel Y, Weissgerber T, Baumann U. Place dependent stimulation rates improve pitch perception in cochlear implantees with single-sided deafness. Hear Res. 2016;339:94–103.

    Article  PubMed  Google Scholar 

  52. Santa Maria PL, Gluth MB, Yuan Y, Atlas MD, Blevins NH. Hearing preservation surgery for cochlear implantation: a meta-analysis. Otol Neurotol. 2014;35(10):e256–69.

    Article  PubMed  Google Scholar 

  53. Havenith S, Lammers MJ, Tange RA, et al. Hearing preservation surgery: cochleostomy or round window approach? A systematic review. Otol Neurotol. 2013;34(4):667–74.

    Article  PubMed  Google Scholar 

  54. Eshraghi AA, Ahmed J, Krysiak E, et al. Clinical, surgical, and electrical factors impacting residual hearing in cochlear implant surgery. Acta Otolaryngol. 2017;137(4):384–388.

  55. Adunka OF, Dillon MT, Adunka MC, King ER, Pillsbury HC, Buchman CA. Cochleostomy versus round window insertions: influence on functional outcomes in electric-acoustic stimulation of the auditory system. Otol Neurotol. 2014;35(4):613–8.

    Article  PubMed  Google Scholar 

  56. Sun CH, Hsu CJ, Chen PR, Wu HP. Residual hearing preservation after cochlear implantation via round window or cochleostomy approach. Laryngoscope. 2015;125(7):1715–9.

    Article  PubMed  Google Scholar 

  57. Ishiyama A, Doherty J, Quesnel AM, Lopez I, Linthicum FH. Post hybrid cochlear implant hearing loss and endolymphatic hydrops. Otol Neurotol. 2016;37(10):1516–1521.

  58. Quesnel AM, Nakajima HH, Rosowski JJ, Hansen MR, Gantz BJ, Nadol JB Jr. Delayed loss of hearing after hearing preservation cochlear implantation: human temporal bone pathology and implications for etiology. Hear Res. 2016;333:225–34.

    Article  PubMed  Google Scholar 

  59. Dinh CT, Haake S, Chen S, et al. Dexamethasone protects organ of corti explants against tumor necrosis factor-alpha-induced loss of auditory hair cells and alters the expression levels of apoptosis-related genes. Neuroscience. 2008;157(2):405–13.

    Article  CAS  PubMed  Google Scholar 

  60. Dinh C, Hoang K, Haake S, et al. Biopolymer-released dexamethasone prevents tumor necrosis factor alpha-induced loss of auditory hair cells in vitro: implications toward the development of a drug-eluting cochlear implant electrode array. Otol Neurotol. 2008;29(7):1012–9.

    Article  PubMed  Google Scholar 

  61. Sweeney AD, Carlson ML, Zuniga MG, et al. Impact of perioperative oral steroid use on low-frequency hearing preservation after cochlear implantation. Otol Neurotol. 2015;36(9):1480–5.

    Article  PubMed  Google Scholar 

  62. Rajan GP, Kuthubutheen J, Hedne N, Krishnaswamy J. The role of preoperative, intratympanic glucocorticoids for hearing preservation in cochlear implantation: a prospective clinical study. Laryngoscope. 2012;122(1):190–5.

    Article  CAS  PubMed  Google Scholar 

  63. Kopelovich JC, Reiss LA, Oleson JJ, Lundt ES, Gantz BJ, Hansen MR. Risk factors for loss of ipsilateral residual hearing after hybrid cochlear implantation. Otol Neurotol. 2014;35(8):1403–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zanetti D, Nassif N, Redaelli de Zinis LO. Factors affecting residual hearing preservation in cochlear implantation. Acta Otorhinolaryngol Ital. 2015;35(6):433–41.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Haynes.

Ethics declarations

Conflict of Interest

Dr. O’Connell consulted on the surgical advisory board for MED-EL.

Dr. Dedmon has nothing to disclose.

Dr. Haynes is a consultant for Advanced Bionics, Cochlear Corporation, MED-EL, and Stryker.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Otology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connell, B.P., Dedmon, M.M. & Haynes, D.S. Hearing Preservation Cochlear Implantation: a Review of Audiologic Benefits, Surgical Success Rates, and Variables That Impact Success. Curr Otorhinolaryngol Rep 5, 286–294 (2017). https://doi.org/10.1007/s40136-017-0176-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40136-017-0176-y

Keywords

Navigation