Log in

Enzyme-Assisted Extraction of Carotenoid-Rich Extract from Red Capsicum (Capsicum annuum)

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

Development of aqueous carotenoid-rich extract (ACE) is a major challenge for the food industry looking for natural colourants. Red capsicum an excellent source of carotenoids has been explored as a novel source for development of ACE through enzymatic liquefaction (EL). Three carbohydrases enzymes viz. viscozyme L, pectinase and cellulase were tested for their liquefaction effects and ability to recover higher carotenoids in aqueous extract. EL significantly (p < 0.05) improved the extract yield and total soluble solids by 2.5-fold to threefold in comparison with unliquefied extract. Incremental increase in dosage of enzymes significantly (p < 0.05) improved the extract yield, total carotenoids, phenolics, ascorbic acid content and antioxidant activity. Viscozyme and pectinase caused significantly higher recovery of carotenoids and other bioactives than cellulase. Viscozyme at dosage of 0.3 % at 60 °C gave the best results. Processing residue or pomace, a spin-off from the EL, was dried to capsicum pomace powder (CPP) and developed as a functional ingredient. The ACE and CPP had higher carotenoid content ranging from 41.72 to 279.83 mg/100 g, respectively. Valorization of capsicum through EL is a promising approach to recover concentrates as valuable food ingredient with reduced processing waste and thus providing sustainability to environment through green processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbes F, Kchaoua W, Bleckerb C, Ongenac M, Lognayd G, Attia H, Besbesa S (2013) Effect of processing conditions on phenolic compounds and antioxidant properties of date syrup. Ind Crop Prod 44:634–642

    Article  CAS  Google Scholar 

  2. Ahmadi M, Heidari O, Nafchi ARM (2015) Optimization of Lycopene Extraction from Tomato Waste with the Integration of Ultrasonic - Enzymatic Processes by Response Surface Methodology. J. Ind. Eng. Res 1(2):29–34

    Google Scholar 

  3. Alrahmany R, Tsopmo A (2012) Role of carbohydrases on the release of reducing sugar, total phenolics and on antioxidant properties of oat bran. Food Chem 132:413–418

    Article  CAS  PubMed  Google Scholar 

  4. AOAC (1990) Official method of analysis, 15th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  5. Apak R, Guclu K, Ozyurek M, Celik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 160:413–419

    Article  CAS  Google Scholar 

  6. Arnao MB (2000) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol 11:419–421

    Article  CAS  Google Scholar 

  7. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  8. Brand WW, Cuvelier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    Article  Google Scholar 

  9. Cinar I (2005) Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochem 40:945–949

    Article  CAS  Google Scholar 

  10. Deepa N, Kaur C, George B, Singh B, Kapoor HC (2007) Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. LWT Food Sci Tecnol 40:121–129

    Article  CAS  Google Scholar 

  11. D’Evoli L, Moscatello S, Baldicchi A, Lucarini M, Cruz-Castillo JG, Aguzzi A, Gabrielli P (2007) Post-harvest quality, phytochemicals and antioxidant activity in organic and conventional kiwifruit (Actinidia deliciosa, cv. Hayward). Ital J Food Sci 25(3):362–366

    Google Scholar 

  12. Evans JD, Akin DE, Foulke JA (2002) Flax-retting by polygalacturonase containing enzyme mixtures and effects on fiber properties. J Biotechnol 97:223–231

    Article  CAS  PubMed  Google Scholar 

  13. Haung D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Chem 53:1841–1856

    Article  Google Scholar 

  14. Karadag A, Ozcelik B, Saner S (2009) Review of methods to determine antioxidant capacities. Food Anal Method 2(1):41–60

    Article  Google Scholar 

  15. Kaur C, Walia S, Nangal S, Singh J, Singh BB, Saha S, Singh B, Kalia P, Jaggi S (2013) Functional quality and antioxidant composition of selected tomato (Solanum lycopersicon L.) cultivars grown in Northern India. LWT Food Sci Technol 50:139–145

    Article  CAS  Google Scholar 

  16. Khandare V, Walia S, Singh M, Kaur C (2011) Black carrot (Daucus carota ssp. sativus) juice: processing effects on antioxidant composition and color. Food Bioprod Process 89:482–486

    Article  CAS  Google Scholar 

  17. Klopotek Y, Otto K, Bohm V (2005) Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity. J Agric Food Chem 53:5640–5646

    Article  CAS  PubMed  Google Scholar 

  18. Koley TK, Walia S, Nath P, Awasthi OP, Kaur C (2011) Nutraceutical composition of Zizyphus mauritiana Lamk (Indian ber): effect of enzyme-assisted processing. Int J Food Sci Nutr 62(3):276–279

    Article  CAS  PubMed  Google Scholar 

  19. Kulshreshtha G, Burlot AS, Marty C, Critchle A, Hafting J, Bedoux G, Bourgougnon N, Prithiviraj B (2015) Enzyme-assisted extraction of bioactive material from Chondrus crispus and Codium fragile and its effect on Herpes simplex virus (HSV-1). Mar Drugs 13:558–580

    Article  PubMed  PubMed Central  Google Scholar 

  20. Larrauri JA, Rupérez P, Borroto B, Saura-Calixto F (1996) Mango peels as a new tropical fibre: preparation and characterization. LWT-Food Sci. Technol. 29(8):729–733

    Article  CAS  Google Scholar 

  21. Magalhaes LM, Segundo MA, Reis S, Lima JL (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613(1):1–19

    Article  CAS  PubMed  Google Scholar 

  22. Martinez R, Torres P, Meneses AM, Figueroa JG, Pérez-Alvarez GA, Viuda-Martos M (2012) Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem 135(3):1520–1526

    Article  CAS  PubMed  Google Scholar 

  23. Mehrlander K, Dietrich H, Sembries S, Dongowski G, Will F (2002) Structural characterization of oligosaccharides and polysaccharides from apple juices produced by enzymatic pomace liquefaction. J Agric Food Chem 50:1230–1236

    Article  PubMed  Google Scholar 

  24. Nadeem M, Anjum FM, Khan MR, Saeed M, Riaz A (2011) Antioxidant potential of bell pepper (Capsicum annum L.)—a review. Pak J Food Sci 21(1–4):45–51

    Google Scholar 

  25. Navarro-Gonzalez I, Veronica GV, Javier GA, Jesus PM (2011) Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Res Int 44:1528–1535

    Article  CAS  Google Scholar 

  26. Oszmianski J, Wojdyło A, Kolniak J (2011) Effect of pectinase treatment on extraction of antioxidant phenols from pomace for the production of puree-enriched cloudy apple juices. Food Chem 127:623–631

    Article  CAS  PubMed  Google Scholar 

  27. Pacheco-palencia A, Lisbeth Hawken P, Talcott ST (2007) Juice matrix composition and ascorbic acid fortification effects on the phytochemical, antioxidant and pigment stability of açai (Euterpe oleracea Mart). Food Chem 105(1):28–35

    Article  CAS  Google Scholar 

  28. Pinelo M, Meyer AS (2008) Enzyme-assisted extraction of antioxidants, release of phenols from vegetal matrixes. Electron J Environ Agric Food Chem 7:3217–3220

    CAS  Google Scholar 

  29. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302

    Article  CAS  PubMed  Google Scholar 

  30. Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing antioxidant power assay. J Agric Food Chem 48:3396

    Article  CAS  PubMed  Google Scholar 

  31. Puri M, Sharma D, Barrow CJ (2011) Enzyme assisted extraction of bioactives from plants. Trends Biotechnol 30(1):37–44

    Article  PubMed  Google Scholar 

  32. Raghu V, Patel K, Srinivas K (2013) Comparison of ascorbic acid content of Emblica officianalis fruits determined by various analytical methods. J Food Comp Anal 20:529–533

    Article  Google Scholar 

  33. Ramamoorthy K, Bhuvaneswari S, Sankar G, Sakkaravarthi K (2010) Proximate composition and carotenoid content of natural carotenoid sources and its colour enhancement on marine ornamental fish amphiprionocellaris. World J Fish Mar Sci 2(6):545–550

    CAS  Google Scholar 

  34. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radical Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  35. Robertson JA, Monredon FD, Dysseler P, Guillon F, Amado R, Thibault TF (2000) Hydration properties of dietary fiber and resistant starch: a European collaborative study. LWT-Food Sci Technol 33:72–79

    Article  CAS  Google Scholar 

  36. Rodriguez-Ambriz SL, Islas-Hernandez JJ, Agama-Acevedo E, Tovar J, Bello-Pérez LA (2008) Characterization of a fibre-rich powder prepared by liquefaction of unripe banana flour. Food Chem 107(4):1515–1521

    Article  CAS  Google Scholar 

  37. Rombaut N, Tixier AS, Bily A, Chemat F (2014) Green extraction processes of natural products as tools for biorefinery. Biofuels, Bioprod Biorefin 8:530–544

    Article  CAS  Google Scholar 

  38. Santamaria RI, Reyes-Duarte RD, Barzana E, Fernando D, Gama FM, Mota M, Lopez-Munguia A (2000) Selective enzyme-mediated extraction of capsaicinoids and caratenoids from chili guajillo puya (Capsicum annum L.) using ethanol as solvent. J Agric Food Chem 48:3063–3067

    Article  CAS  PubMed  Google Scholar 

  39. Singleton VL, Orthofer R, Lamuela-Ranventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  40. Sosulsky FW, Cadden AM (1982) Composition and physiological properties of several sources of dietary fiber. J Food Sci 47:1472–1477

    Article  Google Scholar 

  41. Sowbhagya HB, Chitra VN (2010) Enzyme-assisted extraction of flavorings and colorants from plant materials. Crit Rev Food Sci Nutr 50:146–161

    Article  CAS  PubMed  Google Scholar 

  42. Strati IF, Gogou E, Oreopoulou V (2015) Enzyme and high pressure assisted extraction of carotenoids from tomato waste. J Food Bioprod Proc 94:668–674

    Article  CAS  Google Scholar 

  43. Talcott ST, Howard LR, Brenes CH (2000) Antioxidant changes and sensory properties of carrot puree processed with and without periderm tissue. J Agric Food Chem 48:1315–1321

    Article  CAS  PubMed  Google Scholar 

  44. Vega-Galvez A, Lemus Mondaca R, Bilbao-Sainz C, Fito P, Andres A (2008) Effect of air drying temperature on the quality of rehydrated dried red bell pepper (var Lamuyo). J Food Eng 85(1):42–50

    Article  Google Scholar 

  45. Ying SY, Wang Z, Wu J, Chen F, Liao X, Hu X (2006) Optimising enzymatic maceration in pre-treatment of carrot juice concentrate by response surface methodology. Int J Food Sci Technol 41:1082–1089

    Article  Google Scholar 

  46. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledge Division of Food Science and Postharvest Technology and Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, for providing facilities and financial support during the course of study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prerna Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, P., Kaur, C., Rudra, S.G. et al. Enzyme-Assisted Extraction of Carotenoid-Rich Extract from Red Capsicum (Capsicum annuum). Agric Res 5, 193–204 (2016). https://doi.org/10.1007/s40003-015-0201-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-015-0201-7

Keywords

Navigation