Log in

Control of adult stem cell behavior with biomaterials

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Interactions of stem cells with biophysics of extracellular matrix (ECM) have shown a significant influence in control of the stem cell behavior. To mimic nanometer and micrometer scale of ECM structures, biomaterials such as nanotopographical substrates, nanofibers, conductive gold nanoparticles, carbon nanomaterials, hydrogels, and micropatterned surface are used to culture stem cells. In this review, we focused on easily attainable and clinically applied adult stem cells rather than embryonic stem cells and induced pluripotent stem cells that are still in infantile stage of research. We present the effects of the biomaterials on adult stem cell behavior, especially on stem cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BKK Teo, ST Wong, cK Lim, et al., Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase, ACS Nano, 7, 4785 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. S Khetan, M Guvendiren, WR Legant, et al., Degradationmediated cellular traction directis stem cell fate in covalently crosslinked three-dimensional hydrogels, Nat Materials, 12, 458 (2013).

    Article  CAS  Google Scholar 

  3. HN Kim, A Jiao, NS Hwang, et al., Nanotopography-guided tissue engineering and regenerative medicine, Advanced Drug Delivery Reviews, 65, 536 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. CJ Bettinger, R Langer, JT Borenstein, Engineering substrate micro- and nanotopography to control cell function, Angew Chem Int Ed Engl, 48, 5406 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. SL Goodman, PA Sims, RM Albrecht, Three-dimensional extracellular matrix textured biomaterials, Biomaterials, 17, 2087 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. GA Abrams, SL Goodman, PF Nealey, et al., Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque, Cell Tissue Res, 299, 39 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. E Pamula, V De Cupere, YF Dufrene, et al., Nanoscale organization of adsorbed collagen: influence of substrate hydrophobicity and adsorption time, J Colloid Interf Sci, 271, 80 (2004).

    Article  CAS  Google Scholar 

  8. EKF Yim, SW Pang, KW Leong, Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage, Exp Cell Res, 313, 1820 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. VF Segers, RT Lee, Stem-cell therapy for cardiac disease, Nature, 451, 937 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. KR Chien, IJ Domian, KK Parker, Cardiogenesis and the complex biology of regenerative cardiovascular medicine, Science, 322, 1494 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. DH Kim, Kshitiz, RR Smith, et al., A Levchenko, Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration, Integr Biol, 4, 1019 (2012).

    Article  CAS  Google Scholar 

  12. RR Smith, L Barile, HC Cho, et al., Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens, Circulation, 115, 896 (2007).

    Article  PubMed  Google Scholar 

  13. E Messina, L De Angelis, G Frati, et al., Isolation and expansion of adult cardiac stem cells from human and murine heart, Cir Res, 95, 911 (2004).

    Article  CAS  Google Scholar 

  14. YN Wu, JB Law, AY He, et al., Substrate topography determines the fate of chondrogenesis from human mesenchymal stem cells resulting in specific cartilage phenotype formation, Nanomedicine, DOI: 10.1016/j.nano.2014.04.002 (2014).

    Google Scholar 

  15. BM Baker, AS Nathan, AO Gee, et al., The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis, Biomaterials, 31, 6190 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. YN Wu, Z Yang, JHP Hui, et al., Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells, Biomaterials, 28, 4056 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. S Watari, K Hayashi, JA Wood, et al., Modulation of osteogenic differentiation in hMSCs cells by submicron topographicallypattered ridges and grooves, Biomaterials, 33, 128 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. S Mwenifumbo, MM Stevens, ECM interactions with cells from the macro to nanoscale. In: K Gonsalves, C Halberstadt, CT Laurencin, L Nair, eds. Biomedical Nanostructures, NY: John Wiley & Sons, 223 (2008).

    Google Scholar 

  19. SJ Liliensiek, JA Wood, J Yong, et al., Modulation of human vascular endothelial cell behaviors by nanotopographic cues, Biomaterials, 31, 5418 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. R Vasita, DS Katti, Nanofibers and their applications in tissue engineering, Int J Nanomedicine, 1, 15 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. JM Anderson, JL Patterson, JB Vines, A Javed, SR Gilbert, HW Jun, Biphasic peptide amphiphile nanomatrix embedded with hydroxyapaptite nanoparticles for stimulated osteoinductive response, ACS Nano, 5, 9463 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. JM Anderson, A Andukuri, DJ Lim, et al., Modulating the gelatin properties of self-assembling peptide amphiphiles, ACS NANO, 3, 3447 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. M Supova, Problem of hydroxyapatite dispersion in polymer matrices: a review, J. Mater Sci: Mater Med, 20, 1201 (2009).

    CAS  Google Scholar 

  24. M Vallet-Regí, JM González, Calcium phosphates as substitution of bone tissues, Prog Solid State Chem, 32, 1 (2004).

    Article  Google Scholar 

  25. T Mygind, M Stiehler, A Baatrip, et al., Mesenchymal stem cell in growth and differentiation on coralline hydroxyapatite scaffolds, Biomaterials, 28, 1036 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. H Hosseinkhani, M Hosseinkhani, F Tian, et al., Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nano-fibers, Biomaterials, 27, 4079 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. H Shin, JS Temenoff, GC Bowden, et al., Osteogenic differentiation of rat bone marrow stromal cells cultured on arggly- asp modified hydrogels without dexamethasone and betaglycerol phosphate, Biomaterials, 26, 3645 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. SH Lim, XY Liu, H Song, et al., The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells, Biomaterials, 31, 9031 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. GT Christopherson, H Song, HQ Mao, The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation, Biomaterials, 30, 556 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. MG Chang, L Tung, RB Sekar, et al., Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model, Circulation, 113, 1832 (2006).

    Article  PubMed  Google Scholar 

  31. S Fernandes, HW Van Rijen, V Forest, et al., Cardiac cell therapy: overexpression of connexin 43 in skeletal myoblasts and prevention of ventricular arrhythmias, J Cell Mol Med, 12, 3703 (2009).

    Article  Google Scholar 

  32. M Radisic, H Park, H Shing, et al., Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds, Proc Natl Acad Sci U S A, 101, 18129 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. JO You, M Rafat, GJ Ye, et al., Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression, Nano Lett, 11, 3643 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. M Shevach, BM Maoz, R Feiner, et al., gold particle composite fibers for cardiac tissue engineering, J Materials Chemistry B, 1, 5210 (2013).

    Article  CAS  Google Scholar 

  35. S Bae, H Kim, Y Lee, et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat Nanotechnol, 5, 574 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. M Kalbacova, A Broz, J Kong, et al., Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells, Carbon, 48, 4232 (2010).

    Article  Google Scholar 

  37. WC Lee, CH Lim, H Shi, et al., Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide, ACS Nano, 5, 7334 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. N Jaiswal, SE Haynesworth, AI Caplan, et al., Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro, J Cell Biochem, 64, 295 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. H Hauner, P Schimid, EF Pfeiffer, Glucocorticoids and insulin promotes the differentiation of human adipocyte precursor cells into fat cells, J Clin Endocrinol Metab, 64, 832 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. R Baktur, SH Yoon, S Kwon, Effects of multi-walled carbon nanotube reinforced collagen scaffold on the osteogenic differentiation of mesenchymal stem cells, J Nano Mat, DOI: 10.1155/2013/904083 (2014).

    Google Scholar 

  41. JL Allen, EC Margaret, T Alliston, ECM stiffness primes the TGFâ pathway to prmote chondrocyte differentiation, Mol Biol Cell, 23, 3731 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. AJ Engler, S Sen, HL Sweeney, et al., Matrix elasticity directs stem cell lineage specification, Cell, 126, 677 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. LA Flanagan, YE Ju, B Marg, et al., Neurite branching on deformable substrates, Neuroreport, 12, 2411 (2002).

    Article  Google Scholar 

  44. AJ Engler, MA Griffin, S Sen, et al., Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments, J Cell Biol, 166, 877 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. AJ Garcia, CD Reyes, Bio-adhesive surfaces to promote osteoblast differentiation and bone formation, J Dent Res, 84, 407 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. HJ King, TR Polte, E Alsberg, et al., FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness, Proc Natl Acad Sci U S A, 102, 4300 (2005).

    Article  Google Scholar 

  47. JS Park, JS Chu, AD Tsou, et al., The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β, Biomaterials, 32, 3921 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. K Kurpinski, H Lam, J Chu, et al., Transforming growth factor- β and notch signaling mediate stem cell differentiation into smooth muscle cells, Stem Cells, 28, 734 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. CG William, TK Kim, A Taboas, et al., In vitro condrogenesis of bone marrow-derived mesenchymal stem cells in a phtopolymerizing hydrogel, Tissue Eng, 9, 679 (2003).

    Article  Google Scholar 

  50. AM Kloxin, AM Kasko, CN Salinas, et al., Photodegradable hydrogels for dynamic tuning of physical and chemical properties, Science, 324, 59 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. R McBeath, DM Pirone, CM Nelson, et al., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment, Developmental Cell, 6, 483 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. R Peng, X Yao, B Cao, et al., The effect of culture conditions on the adipogenic and osteogenic inductions of mesenchymal stem cells on micropatterned surfaces, Biomaterials, 33, 6008 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. R Peng, X Yao, J Ding, Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion, Biomaterials, 32, 8048 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. MF Pittenger, AM Mackay, SC Beck, et al., Multilineage potential of adult human mesenchymal stem cells, Science, 284, 143 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. AM Parfitt, Age-related structural change sin trabecular and cortical bone: cellular mechanisms and biomechanical consequences, Calcif Tissue Int, 36 (Suppl 1), S123 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kim, BS. Control of adult stem cell behavior with biomaterials. Tissue Eng Regen Med 11, 423–430 (2014). https://doi.org/10.1007/s13770-014-0068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0068-x

Key words

Navigation