Log in

Adsorptive removal of Pb(II) ion on Arachis hypogaea’s shell: Batch Experiments, statistical, and GA modeling

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

For the conservation of our environment, removing water pollutants from the different wastewater sources is getting critical. This study used a low-cost, green, agricultural waste, Arachis hypogaea’s shell (local name—groundnut shell) to remove Pb(II) ions from an aqueous solution. SEM analyzed surface morphology. FTIR determined functional groups present in the groundnut shell. The effects of different operating parameters on metal removal are investigated. The percentage removal is maximum at pH 5. Langmuir’s adsorption capacity is 3.53 mg/g and is not very high, but the adsorbent is abundantly available in India's rural areas. The adsorption process follows the Pseudo-second-order kinetic and Langmuir isotherm models. As the values of sorption energy lie between 8 and 16 kJ/mol, the adsorption process is chemical. The positive value of entropy (0.193 kJ/mol.K) and enthalpy (53.63 kJ/mol) proves that the process is spontaneous and endothermic. The blood cell count of Gallus gallus domesticus has revealed Pb(II)’s toxic effects with the treated solution. The applicability of MLR and the Genetic Algorithm has also been successfully applied and presented in this study. The scale-up design has been reported. This study aims to develop the utilization of low-cost natural adsorbent, groundnut shell, a natural waste material, widely available throughout India. This adsorbent is expected to provide an excellent and highly porous surface structure with different functional groups that assist the binding of metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A H :

Harkins Jura isotherm constant

A T :

Equilibrium binding constant of Temkin isotherm (L/g)

a :

Fractional power model constant (g/(mg.min))

a e :

Adsorption rate (initial) (mg/(g.min))

B :

Heat of adsorption (J/mol)

B H :

Harkins Jura isotherm constant

b :

Fractional power model constant (mg/g)

b e :

Chemisorption activation energy (g/mg)

b T :

Constant of Temkin isotherm

C :

External convective mass transfer (mg/g)

C a :

Pb(II) ion concentration at the adsorbent at equilibrium (mg/L)

C 0 :

Initial Pb(II) ion concentration (initial) (mg/L)

C e :

Pb(II) ion concentration at equilibrium (mg/L)

C t :

Ion concentration of Pb(II) at time t (mg/L)

D e :

Absorbate’s effective diffusion coefficient in the absorbent phase (m2/s)

E :

Adsorption free energy (kJ/mol)

∆G 0 :

Gibbs free energy change (kJ/mol)

∆H :

Enthalpy change (kJ/mol)

k 1 :

Rate constant of Lagergren’s model (min1)

k 2 :

Rate constant of pseudo-second-order model (g/mg.min)

K ad :

Rate constant of Natarajan and Khalaf model (min1)

K f :

Constant of Freundlich model (mg/g)/(mg/L)1/n

k i :

Rate constant of intra-particle diffusion model (mg/(g.min0.5))

\({K}_{L}\) :

Constant of Langmuir model (L/mg)

\({K}_{C}^{0}\) :

Thermodynamic equilibrium constant

\({K}_{C}^{^{\prime}}\) :

Apparent equilibrium constant

n :

Factor of heterogeneity

q e :

Sorption capacity at equilibrium (mg/g)

q m :

Adsorption capacity of Langmuir isotherm (mg/g)

q s :

Theoretical isotherm saturation capacity (mg/g)

q t :

Sorption capacity at time t (mg/g)

R :

Ideal gas constant (J mol1 K1)

R 2 :

Correlation coefficient

R a :

Adsorbent particle radius (m)

R L :

Dimensionless factor

∆S :

Change of entropy (kJ/mol.K)

T :

Temperature (K)

t :

Time (min)

V :

Solution volume (L)

W :

Adsorbent mass (g

λ :

Constant of Dubinin–Radushkevich isotherm (mol2/KJ 2)

\(\varepsilon\) :

Polanyi potential

References

  • Apaydın-Varol E, Pütün AE (2012) Preparation and characterization of pyrolutic chars from different biomass samples. J Anal Appl Pyrolysis 98:29–36

    Article  Google Scholar 

  • Banerjee M, Bar N, BasuDas RKSK (2017) Comparative study of adsorptive removal of Cr(VI) ion from aqueous solution in fixed bed column by peanut shell and almond shell using empirical models and ANN. Environ Sci Pollut Res 24:10604–10620

    Article  CAS  Google Scholar 

  • Banerjee M, Bar N, Basu RK, Das SK (2018) Removal of Cr(VI) from its aqueous solution using green adsorbent pistachio shell: a fixed bed column study and GA-ANN modeling. Water Conserv Sci Eng 3(1):19–31

    Article  Google Scholar 

  • Banerjee M, Basu RK, Das SK (2019) Cu(II) removal using green adsorbents: kinetic modeling and plant scale-up design. Environ Sci Pollut Res 26(12):11542–11557

    Article  CAS  Google Scholar 

  • Bhattacharya AK, Naiya TK, Mandal SN, Das SK (2008) Adsorption kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chem Eng J 137(3):529–541

    CAS  Google Scholar 

  • Blazquez G, Calero M, Hernainz F, Tenorio G, Martin-Lara MA (2010) Equilibrium biosorption of lead(II) from aqueous solutions by solid waste from olive-oil production. Chem Eng J 160(2):615–622

    Article  CAS  Google Scholar 

  • Boeykens SP, Redondo N, Alvarado R, Caracciolo N, Vázquez C (2019) Chromium and Lead adsorption by avocado seed biomass study through the use of Total Reflection X-Ray Fluorescence analysis. App Rad Isotopes 153:108809

    Article  CAS  Google Scholar 

  • Cimino G, Passerini A, Toscano G (2000) Removal of toxic cations and Cr(VI) from aqueous solutions by hazelnut shell. Water Res 34:2955–2962

    Article  CAS  Google Scholar 

  • Dahiya S, Tripathi RM, Hegde AG (2008) Biosorption of lead and copper from aqueous solutions by pre-treated crab and arca shell biomass. Bioresour Technol 99:179–187

    Article  CAS  Google Scholar 

  • Das A, Banerjee M, Bar, Das SK (2019) Adsorptive removal of Cr(VI) from aqueous solution: kinetic, isotherm, thermodynamics, toxicity, scale-up design, and GA modeling. SN Appl Sci 1:776

    Article  Google Scholar 

  • Das A, Bar N, Das SK (2020) Pb(II) adsorption from aqueous solution by nutshells, green adsorbent: adsorption studies, regeneration studies, scale-up design, its effect on biological indicator and MLR modeling. J Coll Interface Sci 580:245–255

    Article  CAS  Google Scholar 

  • Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Rev 60:235–266

    Article  CAS  Google Scholar 

  • Dubinin MM, Zaverina ED, Radushkevich LV (1947) Sorption and structure of active carbons I. Adsorption of organic vapors. ZhurnalFizicheskoiKhimii 21:1351–1362

    CAS  Google Scholar 

  • Freundlich HMF (1906) Über die adsorption in losungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  • Ghosh K, Bar N, Biswas AB, Das SK (2019) Removal of methylene blue (aq) using untreated and acid treated eucalyptus leaves and GA-ANN modelling. Can J Chem Eng 97(11):2883–2898

    Article  CAS  Google Scholar 

  • Groundnut outlook report, (2021) Angrau.ac.in/downloads/AMIC/GROUNDNUT%20OUTLOOK%20REPORT%20-%20January%20to%20May%202021.pdf, assessed on 29th Sept. 2021.

  • Han R, Zhang J, Zou W, Shi J, Lui H (2005) Equilibrium biosorption isotherm for lead ion on chaff. J Hazard Mater 125:266–271

    Article  CAS  Google Scholar 

  • Harkins WD, Jura G (1943) An absolute method for the determination of the area of a fine crystalline powder. J Chem Phys 11:430

    Article  CAS  Google Scholar 

  • Huang L, Kong J, Wang W, Zhang C, Niu S, Gao B (2012) Study on Fe(III) and Mn(II) modified activated carbons derived from Zizanialatifolia to remove basic fuchsin. Desalination 286:268–276

    Article  CAS  Google Scholar 

  • Huang Y, Li S, Chen J, Zhang X, Chen Y (2014) Adsorption of Pb (II) on mesoporous activated carbonsfabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies. Appl Surf Sci 293:160–168

    Article  CAS  Google Scholar 

  • IS 10500: (1992) Drinking water specification (reaffirmed 1993). http://www.hppcb.nic.in/EIAsorang/Spec.pdf. Accessed 09 Aug 2007

  • Kharif, (2018) Survey of Groundnut Crop, Agricultural & Processed Food Products Export Development Authority, Ministry of Commerce & Industry, Government of India. 2018

  • Kyzas G, Kostoglou ZM (2014) Green adsorbents for wastewaters: a critical review. Materials 7:333–364

    Article  Google Scholar 

  • Lagergren S (1898) Zurtheorie der sogenannten adsorption gelӧsterstoffle. Kungliga Sevenska Vetenskapasakdemiens Handilinger 24(4):1–39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Li S, Xu S, Liu S, Yang C, Lu Q (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Proc Technol 85:1201–1211

    Article  CAS  Google Scholar 

  • Li Q, Zhai J, Zhang W, Wang M, Zhou J (2007) Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solutions by saw dust and modified peanut husk. J Hazard Mater 141:163–167

    Article  CAS  Google Scholar 

  • Li Y, Du Q, Wang X, Zhang P, Wang D, Wang Z, **a Y (2010) Removal of lead from aqueous solution byactivated carbon prepared from Enteromorphaprolifera by zinc chloride activation. J Hazard Mater 183:583–589

    Article  CAS  Google Scholar 

  • Mitra T, Singha B, Bar N, Das SK (2014) Removal of Pb(II) ions from aqueous solution using water hyacinth root by fixed-bed column & ANN modeling. J Hazard Mater 273:94–103

    Article  CAS  Google Scholar 

  • Nag S, Mondal A, Roy AN, Bar N, Das SK (2018) Sustainable bioremediation of Cd(II) from aqueous solution using natural waste materials: Kinetics, equilibrium, thermodynamics, toxicity studies and GA-ANN hybrid modeling. Environ Tech & Innovation 11:83–104

    Article  Google Scholar 

  • Nag S, Bar N, Das SK (2019) Sustainable bioremadiation ofCd(II) in fixed bed column using green adsorbents: Application of Kinetic models and GA-ANN technique. Environ Technol Innov 13:130–145

    Article  Google Scholar 

  • Nag S, Bar N, Das SK (2020) Cr(VI) removal from aqueous solution using green adsorbents in continuous bed column - Statistical and GA-ANN hybrid modeling. Chem Eng Sci 226:115904

    Article  CAS  Google Scholar 

  • Naiya TK, Bhattacharya AK, Das SK (2008) Adsorption of Pb(II) by sawdust and neem bark from aqueous solutions. Environ Prog 27(3):313–328

    Article  CAS  Google Scholar 

  • Naiya TK, Bhattacharya AK, Mandal S, Das SK (2009) The sorption of lead (II) ions on rice husk ash. J Hazard Mater 163:1254–1264

    Article  CAS  Google Scholar 

  • Pang X, Sellaoui L, Franco D, Dotto GL, Georgin J, Bajahzar A, Belmabrouk H, LamineA B, Bonilla-Petriciolet A, LiZ (2018) Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chem Eng J 378:122101

    Article  Google Scholar 

  • Pehlivan E, Altun T, Parlayici S (2009) Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions. J Hazard Mater 164:982–986

    Article  CAS  Google Scholar 

  • Polanyi M (1932) Section III—theories of the adsorption of gases. A general survey and some additional remarks. Trans Faraday Soc 28:316–333

    Article  CAS  Google Scholar 

  • Rudzinski W, Panczyk T (2002) The Langmuirian adsorption kinetics revised: a farewell to the XXth century theories? Adsorption 8:23–34

    Article  CAS  Google Scholar 

  • Sellaoui L, Franco D, Ghalla H, Georgin J, Netto MS, Dotto GL, Bonilla-Petriciolet A, Belmabrouk H, Bajahzar A (2020) Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: experiments, phenomenological modelling and DFT calculations. Chem Engg J 394:125011

    Article  CAS  Google Scholar 

  • Shahul HK, Sivakumar S, Satheesh KR (2016) Isotherm and kinetic studies on the adsorption of Commassie Brilliant Blue on commercial activated carbon and kaolin. Global J Adv Res 3:723–731

    Google Scholar 

  • Siddiqui SI, Chaudhry SA (2018) A review on graphene oxide and its composites preparation and their use for the removal of As3+and As5+ from water under the effect of various parameters: Application of isotherm, kinetic and thermodynamics. Process Saf Environ Protect 119:138–163

    Article  CAS  Google Scholar 

  • Siddiqui SI, Chaudhry SA (2019) Nanohybrid composite Fe2O3-ZrO2/BC for inhibiting the growth of bacteria and adsorptive removal of arsenic and dyes from water. J Clean Prod 223:849–868

    Article  CAS  Google Scholar 

  • Singha B, Das SK (2012) Removal of Pb (II) ions from aqueous solution and industrial effluent using natural biosorbents. Environ Sci Pollut Res 19(6):2212–2226

    Article  CAS  Google Scholar 

  • Singha B, Bar N, Das SK (2015) The use of artificial neural network (ANN) for modeling of Pb(II) adsorption in batch process. J Mol Liquids 211:228–232

    Article  CAS  Google Scholar 

  • Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst, Acta Phys Chim USSR12, pp. 327–356

  • Venckatesh R, Amudha T, Sivaraj R, Chandramohan M, Jambulingam M (2010) Kinetics and equilibrium studies of adsorption of direct Red-28 onto Punicagranatum Carbon. Int J Engg Sci Technol 2(6):2040–2050

    Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanitary Eng Div 89:31–60

    Article  Google Scholar 

  • Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621

    Article  CAS  Google Scholar 

  • Zainuddin MF, Shamsudin R, Mokhtar MN, Ismail D (2014) Physicochemical properties of pineapple plant waste fibres from the leaves and stems of different varieties. Bio Resour 9:5311–5324

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

AD is a research scholar, planned and executed experiments and data analysis, prepared the draft manuscript. NB performed software applications. SKD was involved in conceiving the idea, planning the experiments, overall supervision and finalized the manuscript.

Corresponding author

Correspondence to S K Das.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Editorial responsibility: Gaurav Sharma.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Bar, N. & Das, S.K. Adsorptive removal of Pb(II) ion on Arachis hypogaea’s shell: Batch Experiments, statistical, and GA modeling. Int. J. Environ. Sci. Technol. 20, 537–550 (2023). https://doi.org/10.1007/s13762-021-03842-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03842-w

Keywords

Navigation