Log in

Assessing forest health via linking the geochemical properties of a soil profile with the biochemical parameters of vegetation

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The transfer of chemical elements/compounds within the soil–plant chain is a part of the biochemical cycling, and this system is controlled by biotic and abiotic factors which determine the final mobility and availability of chemical variables. Heavy metal contamination and low pH are stress factors that lead to changes in the contents of important foliage compounds, which can be used as non-specific indicators of plant stress. In this study, Norway spruce forests in the Sokolov region, being a part of the “Black Triangle,” were selected to assess geochemical and biochemical interactions in the natural soil/plant system. The authors studied the relationship between soil and spruce needle contents of macronutrients and potentially toxic elements and tested whether the soil parameters and their vertical distribution within a soil profile (two organic and two mineral horizons) affect foliage biochemical parameters (contents of photosynthetic pigments, phenolic compounds and lignin). Factor analysis was used to identify underlying variables that explained the pattern of correlations within and between the biochemical and geochemical datasets. Aluminum (Al) and arsenic (As) were identified as toxic elements with high bio-availability for spruce trees, and both were taken up by trees and translocated to the foliage. The correlations between two toxic element contents in needles (Al and As) and the contents of soluble phenolic compounds and total carotenoid to chlorophyll ratio suggest that these latter two biochemical parameters, which both proved to be sensitive to the soil geochemical conditions, can serve as suitable non-specific stress markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriano D (2001) Trace elements in terrestrial environments—biogeochemistry bioavailability and risks of metals. Springer, New York

    Book  Google Scholar 

  • Albrechtova J, Seidl Z, Aitkenhead-Peterson J, Lhotáková Z, Rock BN, Alexander JE et al (2008) Spectral analysis of coniferous foliage and possible links to soil chemistry: are spectral chlorophyll indices related to forest floor dissolved organic C and N? [Article; Proceedings Paper]. Sci Total Environ 404(2–3):424–432. doi:10.1016/j.scitotenv.2007.11.006

    Article  CAS  Google Scholar 

  • Aspinwall MJ, King JS, Booker FL, McKeand SE (2011) Genetic effects on total phenolics condensed tannins and non-structural carbohydrates in loblolly pine (Pinus taeda L.) needles. Tree Physiol 31(8):831–842. doi:10.1093/treephys/tpr073

    Article  CAS  Google Scholar 

  • Aznar JC, Richer-Lafleche M, Begin C, Begin Y (2009) Lead exclusion and copper translocation in black spruce needles. Water Air Soil Pollut 203(1–4):139–145. doi:10.1007/s11270-009-9997-8

    Article  CAS  Google Scholar 

  • Berthelsen BO, Ardal L, Steinnes E, Abrahamsen G, Stuanes AO (1994) Mobility of heavy-metals in pine forest soils as influenced by experimental acidification. Water Air Soil Pollut 73(1–4):29–48. doi:10.1007/bf00477974

    Article  CAS  Google Scholar 

  • Bialonska D, Zobel AM, Kuras M, Tykarska T, Sawicka-Kapusta K (2007) Phenolic compounds and cell structure in bilberry leaves affected by emissions from a Zn–Pb smelter. Water Air Soil Pollut 181(1–4):123–133. doi:10.1007/s11270-006-9284-x

    Article  CAS  Google Scholar 

  • Blaser P, Zimmermann S, Luster J, Shotyk W (2000) Critical examination of trace element enrichments and depletions in soils: As Cr Cu Ni Pb and Zn in Swiss forest soils. Sci Total Environ 249(1–3):257–280. doi:10.1016/s0048-9697(99)00522-7

    Article  CAS  Google Scholar 

  • Borůvka L, Vacek O, Jehlička J (2005) Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 128(3–4):289–300. doi:10.1016/j.geoderma.2005.04.010

    Article  Google Scholar 

  • Bouška V, Pešek J (1999) Quality parameters of lignite of the North Bohemian Basin in the Czech Republic in comparison with the world average lignite. Int J Coal Geol 40(2–3):211–235. doi:10.1016/s0166-5162(98)00070-6

    Google Scholar 

  • Brun CB, Peltola P, Astrom ME, Johansson MB (2010) Spatial distribution of major trace and ultra trace elements in three Norway spruce (Picea abies) stands in boreal forests Forsmark Sweden. Geoderma 159(3–4):252–261. doi:10.1016/j.geoderma.2010.07.018

    Article  CAS  Google Scholar 

  • Bussinow M, Sarapatka B, Dlapa P (2008) Effect of old mining activities on nutrient and toxic elements concentration in the biomass of Norway spruce (Picea abies L Karst.) and European Birch (Betula pendula L.). Int J Environ Pollut 33(2–3):235–247. doi:10.1504/ijep.2008.019396

    Article  CAS  Google Scholar 

  • Campbell PKE, Rock BN, Martin ME, Neefus CD, Irons JR, Middleton EM et al (2004) Detection of initial damage in Norway spruce canopies using hyperspectral airborne data. Int J Remote Sens 25(24):5557–5583. doi:10.1080/01431160410001726058

    Article  Google Scholar 

  • Clarholm M, Skyllberg U (2013) Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils. Soil Biol Biochem 63:142–153. doi:10.1016/j.soilbio.2013.03.019

    Article  CAS  Google Scholar 

  • Collignon C, Boudot JP, Turpault MP (2012) Time change of aluminium toxicity in the acid bulk soil and the rhizosphere in Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) stands. Plant Soil 357(1–2):259–274. doi:10.1007/s11104-012-1154-2

    Article  CAS  Google Scholar 

  • Davis J (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New York

    Google Scholar 

  • Demmig-Adams B, Adams WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1(1):21–26

    Article  Google Scholar 

  • Dijkstra FA, Smits MM (2002) Tree species effects on calcium cycling: the role of calcium uptake in deep soils. Ecosystems 5(4):385–398. doi:10.1007/s10021-001-0082-4

    Article  CAS  Google Scholar 

  • Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ, Cronan CS, Eagar C, Lambert KF, Likens GE, Stoddard JL, Weathers KC (2001) Acidic deposition in the northeastern United States: sources and inputs ecosystem effects and management strategies. Bioscience 51(3):180–198. doi:10.1641/0006-3568(2001)051

    Article  Google Scholar 

  • Egli M, Sartori G, Mirabella A, Giaccai D, Favilli F, Scherrer D et al (2010) The influence of weathering and organic matter on heavy metals lability in silicatic Alpine soils. Sci Total Environ 408(4):931–946. doi:10.1016/j.scitotenv.2009.10.005

    Article  CAS  Google Scholar 

  • Fabiánek P (2004) Forest condition and monitoring in the Czech Republic 1984–2003, Ministry Of Agriculture of the Czech Republic and Forestry and Game Management Research Institute, ELAN spol. s.r.o., Přerov, Czech Republic

  • Fitzpatrick ML, Long DT, Pijanowski BC (2007) Exploring the effects of urban and agricultural land use on surface water chemistry across a regional watershed using multivariate statistics. Appl Geochem 22(8):1825–1840. doi:10.1016/j.apgeochem.2007.03.047

    Article  CAS  Google Scholar 

  • Harraz HZ, Hamdy MM, El-Mamoney MH (2012) Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in Barramiya gold mine Eastern Desert Egypt. J Afr Earth Sci 68:1–14. doi:10.1016/j.jafrearsci.2012.03.009

    Article  CAS  Google Scholar 

  • Hartmann K, Wunnemann B (2009) Hydrological changes and Holocene climate variations in NW China inferred from lake sediments of Juyanze palaeolake by factor analyses. Quatern Int 194:28–44. doi:10.1016/j.quaint.2007.06.037

    Article  Google Scholar 

  • Homolová L, Lukeš P, Malenovský Z, Lhotáková Z, Kaplan V, Hanuš J (2013) Measurement methods and variability assessment of the Norway spruce total leaf area: implications for remote sensing. Trees Struct Funct 27(1):111–121. doi:10.1007/s00468-012-0774-8

    Article  Google Scholar 

  • Hruška J, Krám P (1994) Aluminum chemistry of the root-zone of forest soil affected by acid deposition at the lysina catchment Czech-Republic. Ecol Eng 3(1):5–16. doi:10.1016/0925-8574(94)90007-8

    Article  Google Scholar 

  • Huang Y, Tao S (2004) Influences of excessive Cu on photosynthesis and growth in ectomycorrhizal Pinus sylvestris seedlings. J Environ Sci 16(3):414–419

    CAS  Google Scholar 

  • Ijmker J, Stauch G, Hartmann K, Diekmann B, Dietze E, Opitz S et al (2012) Environmental conditions in the Donggi Cona lake catchment NE Tibetan Plateau based on factor analysis of geochemical data. J Asian Earth Sci 44:176–188. doi:10.1016/j.jseaes.2011.04.021

    Article  Google Scholar 

  • Ivanov YV, Savochkin YV, Kuznetsov VV (2011) Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal action: effects of continuous zinc presence on morphometric and physiological characteristics of develo** pine seedlings. Russ J Plant Physiol 58(5):871–878. doi:10.1134/s1021443711050104

    Article  CAS  Google Scholar 

  • Jonard M, Legout A, Nicolas M, Dambrine E, Nys C, Ulrich E et al (2012) Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: a long-term integrated perspective. Glob Change Biol 18(2):711–725. doi:10.1111/j.1365-2486.2011.02550.x

    Article  Google Scholar 

  • Juice SM, Fahey TJ, Siccama TG, Driscoll CT, Denny EG, Eagar C, Cleavitt NL, Minocha R, Richardson AD (2006) Response of sugar maple to calcium addition to northern hardwood forest. Ecology 87(5):1267–1280

    Article  Google Scholar 

  • Kabata-Pendias A (2004) Soil–plant transfer of trace elements—an environmental issue. Geoderma 122(2–4):143–149. doi:10.1016/j.geoderma.2004.01.004

    Article  CAS  Google Scholar 

  • Klepzig KD, Smalley EB, Raffa KF (1996) Interactions of ecologically similar saprogenic fungi with healthy and abiotically stressed conifers. For Ecol Manag 86(1–3):163–169. doi:10.1016/s0378-1127(96)03777-2

    Article  Google Scholar 

  • Kolka RK, Nater EA, Grigal DF, Verry ES (1999) Atmospheric inputs of mercury and organic carbon into a forested upland bog watershed. Water Air Soil Pollut 113(1–4):273–294. doi:10.1023/a:1005020326683

    Article  CAS  Google Scholar 

  • Kopačková V, Chevrel S, Bourguignon A (2011) Spectroscopy as a tool for geochemical modeling. Proc SPIE 8181:818106. doi:10.1117/12.898404

    Article  Google Scholar 

  • Kopačková V, Chevrel S, Bourguignon A, Rojík P (2012) Application of high altitude and ground-based spectroradiometry to map** hazardous low-pH material derived from the Sokolov open-pit mine. J Maps 8(3):220–230. doi:10.1080/17445647.2012.705544

    Article  Google Scholar 

  • Krám P, Hruška J, Driscoll CT, Johnson CE, Oulehle F (2009) Long-term changes in aluminum fractions of drainage waters in two forest catchments with contrasting lithology. J Inorg Biochem 103(11):1465–1472. doi:10.1016/j.**orgbio.2009.07.025

    Article  Google Scholar 

  • Kupková L, Potůčková M, Buřičová M, Kopačková V, Lhotáková Z, Albrechtová J et al (2012) Determination of lignin content in norway spruce foliage using nir spectroscopy and hyperspectral data. IEEE Int Geosci Remote Sens Symp (Igarss) 2012:4190–4193

    Google Scholar 

  • Lange BM, Lapierre C, Sandermann H (1995) Elicitor-induced spruce stress lignin—structural similarity to early developmental lignins. Plant Physiol 108(3):1277–1287

    CAS  Google Scholar 

  • Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212(3):323–331. doi:10.1007/s004250000400

    Article  CAS  Google Scholar 

  • Lepedus H, Viljevac M, Cesar V, Ljubesic N (2005) Functioning of the photosynthetic apparatus under low and high light conditions in chlorotic spruce needles as evaluated by in vivo chlorophyll fluorescence. Russ J Plant Physiol 52(2):165–170. doi:10.1007/s11183-005-0024-7

    Article  CAS  Google Scholar 

  • MacFarlane GR (2002) Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems. Mar Pollut Bull 44(3):244–256. doi:10.1016/s0025-326x(01)00255-7

    Article  CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68(1):1–13. doi:10.1016/j.envexpbot.2009.10.011

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2005) Study of the heavy metals mobility in different soils affecting vegetation. Natl Acad Sci Lett 28(7–8):251–258

    CAS  Google Scholar 

  • Mani D, Sharma B, Kumar C, Pathak N, Balak S (2012a) Phytoremediation potential of Helianthus annuus L in sewage-irrigated indo-gangetic alluvial soils. Int J Phytorem 14(3):235–246. doi:10.1080/15226514.2010.498844

    Article  CAS  Google Scholar 

  • Mani D, Sharma B, Kumar C, Balak S (2012b) Depth-wise distribution mobility and naturally occurring glutathione based phytoaccumulation of cadmium and zinc in sewage-irrigated soil profiles. Int J Environ Sci Technol 1–14. doi:10.1007/s13762-012-0121-z

  • Martinez-Penalver A, Grana E, Reigosa MJ, Sanchez-Moreiras AM (2012) The early response of Arabidopsis thaliana to cadmium- and copper-induced stress. Environ Exp Bot 78:1–9. doi:10.1016/j.envexpbot.2011.12.017

    Article  CAS  Google Scholar 

  • Matzner E, Prenzel J (1992) Acid deposition in the german soiling area—effects on soil solution chemistry and al mobilization. Water Air Soil Pollut 61(3–4):221–234. doi:10.1007/bf00482606

    Article  CAS  Google Scholar 

  • Mišurec J, Kopačková V, Lhotáková Z, Hanuš J, Weyermann J, Entcheva-Campbell P et al (2012) Utilization of hyperspectral image optical indices to assess the Norway spruce forest health status. J Appl Remote Sens 6:063545. doi:10.1117/1.jrs.6.063545

    Article  Google Scholar 

  • Moldán B, Schnoor JL (1992) Czechoslovakia—examining a critically ill environment. Environ Sci Technol 26(1):14–21. doi:10.1021/es00025a001

    Article  Google Scholar 

  • Moura JCMS, Bonine CAV, Viana JDF, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52(4):360–376

    Article  CAS  Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant–litter–soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry 42(1–2):189–220. doi:10.1023/a:1005991908504

    Article  CAS  Google Scholar 

  • Nwoko CO (2010) Trends in phytoremediation of toxic elemental and organic pollutants. Afr J Biotechnol 9(37):6010–6016

    CAS  Google Scholar 

  • Obrist D, Johnson DW, Edmonds RL (2012) Effects of vegetation type on mercury concentrations and pools in two adjacent coniferous and deciduous forests. J Plant Nutr Soil Sci 175(1):68–77. doi:10.1002/jpln.201000415

    Article  CAS  Google Scholar 

  • Ollerová H, Marusková A, Kontrisová O, Pliestiková L (2010) Mercury accumulation in Picea abies (L.) Karst Needles with regard to needle age. Pol J Environ Stud 19(6):1401–1404

    Google Scholar 

  • Pallardy S (2008) Physiology of woody plants. Elsevier, London

    Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta 975(3):384–394. doi:10.1016/s0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Roivainen P, Makkonen S, Holopainen T, Juutilainen J (2012) Element interactions and soil properties affecting the soil-to-plant transfer of six elements relevant to radioactive waste in boreal forest. Radiat Environ Biophys 51(1):69–78. doi:10.1007/s00411-011-0393-6

    Article  CAS  Google Scholar 

  • Rojík P (2004) New stratigraphic subdivision of the tertiary in the Sokolov Basin in Northwestern Bohemia. J Czech Geol Soc 49(3–4):173–185

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611

    Article  Google Scholar 

  • Siefermannharms D (1994) Light and temperature control of season-dependent changes in the alpha-carotene and beta-carotene content of spruce needles. J Plant Physiol 143(4–5):488–494

    Article  CAS  Google Scholar 

  • Simon L, Hally J (1984) Rychlé stanovení arsenu v hnědém uhlí SHR—quick determination of arsenic in coal of the North-bohemian brown coal distrikt. Acta Montana 68:253–263

    CAS  Google Scholar 

  • Singleton VL (1965) Colorimetry of total phenolics and phosphomolybdic-phosphotungstic acid reagents. In: Rossi VA (ed) Am J Enol Vitic 16:144–158

  • Soukupová J, Cvikrová M, Albrechtová J, Rock BN, Eder J (2000) Histochemical and biochemical approaches to the study of phenolic compounds and peroxidases in needles of Norway spruce (Picea abies). New Phytol 146(3):403–414. doi:10.1046/j.1469-8137.2000.00666

    Article  Google Scholar 

  • Suchara I, Sucharová J, Holá M, Reimann C, Boyd R, Filzmoser P et al (2011) The performance of moss grass and 1- and 2-year old spruce needles as bioindicators of contamination: a comparative study at the scale of the Czech Republic. Sci Total Environ 409(11):2281–2297. doi:10.1016/j.scitotenv.2011.02.003

    Article  CAS  Google Scholar 

  • Tausz M, Landmesser H, Posch S, Monschein S, Grill D, Wienhaus O (2007) Multivariate patterns of antioxidative and photoprotective defence compounds in spruce needles at two central European forest sites of different elevation. Environ Monit Assess 128(1–3):75–82. doi:10.1007/s10661-006-9416-1

    Article  CAS  Google Scholar 

  • Tripathi VS (1979) Factor-analysis in geochemical-exploration. J Geochem Explor 11(3):263–275. doi:10.1016/0375-6742(79)90004-9

    Article  CAS  Google Scholar 

  • Tuzhilkina VV (2009) Response of the pigment system of conifers to long-term industrial air pollution. Russ J Ecol 40(4):227–232. doi:10.1134/s1067413609040018

    Article  CAS  Google Scholar 

  • Tzvetkova N, Hadjiivanova C (2006) Chemical composition and biochemical changes in needles of Scots pine (Pinus sylvestris L.) stands at different stages of decline in Bulgaria. Trees Struct Funct 20(4):405–409. doi:10.1007/s00468-006-0052-8

    Article  CAS  Google Scholar 

  • Ushio M, Miki T, Kitayama K (2009) Phenolic control of plant nitrogen acquisition through the inhibition of soil microbial decomposition processes: a plant-microbe competition model. Microb Environ 24(2):180–187. doi:10.1264/jsme2.ME09107

    Article  Google Scholar 

  • Webster R (2001) Statistics to support soil research and their presentation. Eur J Soil Sci 52(2):331–340. doi:10.1046/j.1365-2389.2001.00383.x

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophyll-a and chlorophyll-b as well as total carotenoids using various solvents with spectrophotometers of different resolution. J Plant Physiol 144(3):307–313

    Article  CAS  Google Scholar 

  • Yu ZS, Kraus TEC, Dahlgren RA, Horwath WR, Zasoski RJ (2003) Mineral and dissolved organic nitrogen dynamics along a soil acidity-fertility gradient. Soil Sci Soc Am J 67(3):878–888

    Article  CAS  Google Scholar 

  • Yudovich YE, Ketris MP (2005) Arsenic in coal: a review. Int J Coal Geol 61(3–4):141–196. doi:10.1016/j.coal.2004.09.003

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

  • Zirlewagen D, Raben G, Weise M (2007) Zoning of forest health conditions based on a set of soil topographic and vegetation parameters. For Ecol Manag 248(1–2):43–55. doi:10.1016/j.foreco.2007.02.038

    Article  Google Scholar 

Download references

Acknowledgments

This research is being undertaken as part of a HYPSO scientific research project within the framework of Grant No. 205/09/1989 funded by the Czech Science Foundation. Many thanks are due to Dr. Petr Rojík (Sokolovská uhelná a.s.) for his substantial assistance with the field campaign, to all the students who participated in sample collection, and to Mgr. Drahomíra Bartáková who helped with biochemical assessments of phenolic compounds and lignin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kopačková.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopačková, V., Lhotáková, Z., Oulehle, F. et al. Assessing forest health via linking the geochemical properties of a soil profile with the biochemical parameters of vegetation. Int. J. Environ. Sci. Technol. 12, 1987–2002 (2015). https://doi.org/10.1007/s13762-014-0602-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0602-3

Keywords

Navigation