Log in

Characterization of PM2.5 by X-ray diffraction and scanning electron microscopy–energy dispersive spectrometer: its relation with different pollution sources

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Atmospheric PM2.5 samples were collected by using Mini-Vol TAS air sampler. Samples were characterized directly on the collecting substrate using X-ray diffraction and scanning electron microscopy–energy dispersive spectrometer. From the analysis, it was found that Si dominate over other elements which follows the trend as Si > S > Zn > Cu > Na > Al > K > Ca > P > Fe > Mg > Ti. Based on the measurements of a population of 840 particles, particle morphology was determined by quantitative image analyzer and value of roundness (R) varies from 0.23 to 1.0 (mean 0.75) which suggests that particles vary in shape from nearly irregular to perfectly spherical shape. The mineral particulate matter identified in the atmosphere of Pune was made up of: silicates (52 %), oxides (22 %), sulfates (8 %), phosphates (7 %), carbonates (3 %) and others. A factorial analysis was carried out to determine the main elements related to the emission sources such as soil and building material erosion (~44.6 %); oil combustion (20.6 %) and fuel and biomass burning (18.3 %). Besides these factors, soot particles are abundantly present in all studied samples. Mineral particles such as sulfates aggregated to soot could have produced localized climatic effect in Pune. The emphasis of the present study is to give insight and detailed analysis of morphological and chemical composition of atmospheric particles at discrete level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adachi K, Chung SH, Buseck PR (2010) Shapes of soot aerosol particles and implications for their effects on climate. J Geophys Res 115 (D15206), doi:10.1029/2009JD012868

  • Adriano DC (2001) Trace elements in terrestrial environments-biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Andreae MO (1995) Climatic effects of changing atmospheric aerosol levels. In: Henderson-Sellers A (ed) Future climates of the World: a modeling perspectives. World survey of climatology, vol 16, Elsevier, Amsterdam, p 341–392

  • Berube KA, Jones TP, Housley DG, Richards RJ (2004) The respiratory toxicity of airborne volcanic ash from the Soufriere Hills volcano, Montserrat. Mineralo Mag 68(1):47–60

    Article  CAS  Google Scholar 

  • Breed CA, Arocena JM, Sutherland D (2002) Possible sources of PM10 in Prince George (Canada) as revealed by morphology and in situ chemical composition of particulate. Atmos Environ 36:1721–1731

    Article  CAS  Google Scholar 

  • Buseck PR, Pósfai M (1999) Airborne minerals and related aerosol particles: effects on climate and the environment. In: Proceedings of the National Academy of Sciences of the United States of America

  • Buseck PR, Jacob DJ, Pósfai M, Li J, Anderson JR (2000) Minerals in the air: an environmental perspective. Int Geol Rev 7:577–594

    Google Scholar 

  • Chabas A, Lefevre RA (2000) Chemistry and microscopy of atmospheric particulates at Delos (Cyclades-Greece). Atmos Environ 34:225–238

    Article  CAS  Google Scholar 

  • Chang H-L, Chun C-M, Aksay IA, Shih W-H (1999) Conversion of fly ash into mesoporous aluminosilicate. Ind Eng Chem Res 38:937–977

    Google Scholar 

  • Cong Z, Kang S, Dong S, Liu X, Qin D (2010) Elemental and individual particle analysis of atmospheric aerosols from high Himalayas. Environm Monit Assess 160:323–335

    Article  CAS  Google Scholar 

  • Dentener FJ, Carmichael GR, Zhang Y, Lelieveld J, Crutzen PJ (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res 101:22869–22889

    Article  CAS  Google Scholar 

  • Dockery D, Pope C, Xu X, Spengler J, Ware J, Fay M, Ferris B, Speizer F (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329:1753–1759

    Article  CAS  Google Scholar 

  • Duce RA (1995) Source distributions and fluxes of mineral aerosols and their relationship to climate. In: Charlson RJ, Heintzenberg J (eds), Aerosol forcing of climate, Wiley, New York

  • Ekosse G, van den Heever DJ, de Jager L, Totolo O (2004) Environmental chemistry and mineralogy of particulate air matter around Selebi Phikwe nickel–copper plant, Botswana. Miner Eng 17:349–353

    Article  CAS  Google Scholar 

  • Ghio AJ, Devlin RB (2001) Inflammatory lung injury after bronchial instillation of air pollution particles. Am J Respir Crit Care Med 164:704–708

    Google Scholar 

  • Jung CH, Kim YP (2006) Numerical estimation of the effects of condensation and coagulation on visibility using the moment method. J Aerosol Sci 37(2):143–161

    Article  CAS  Google Scholar 

  • Kunzly N, Kaiser R, Medina S, Studnicka M, Chanel O, Fillinger P, Herry M, Horak Jr F, Puybon nieux-Texier V, Quénel P, Schneider J, Seethaler R, Vergnaud J-C, Sommer H (2000) Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356:795–801

    Google Scholar 

  • Li W, Shao L (2009a) Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. J Geophys Res 114:D09302. doi:10.1029/2008jD011285

    Google Scholar 

  • Li W, Shao L (2009b) Observation of nitrate coatings on atmospheric mineral dust particles. Atmos Chem Phys 9:1863–1871

    Article  Google Scholar 

  • Li XY, Gilmour PS, Donaldson K, MacNee W (1996) Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax 51:1216–1222

    Article  CAS  Google Scholar 

  • Li J, Pósfai M, Hobbs PV, Buseck PR (2003) Individual aerosol particles from biomass burning in southern Africa: 2. Compositions and aging of inorganic particles. J Geophys Res-Atmos 108, SAF 20/1–SAF 20/12

  • Li W, Shao L, Shen R, Yang S, Wang Z, Tang U (2011) Internally mixed sea salt, soot and sulphate at Macao, a coastal city in south China. J Air Waste Manage Assoc 61(11):1166–1173

    CAS  Google Scholar 

  • Lu Senlin, Longyi S, Minghong Wu, Zheng J (2006) Mineralogical characterization of airborne individual particulates in Bei**g PM10. J Environ Sci 18(1):90–95

  • Liu X, Zhu J, Espen PV, Adams F, **ao R, Dong S (2005) Single particle characterization of spring and summer aerosols in Bei**g: formation of composite sulfate of calcium and potassium. Atmos Environ 39:6909–6018

    Google Scholar 

  • Ma CJ, Kasahara M, Holler R, Kamiya T (2001) Characteristics of single particles sampled in Japan during the Asian dust storm period. Atmos Environ 35:2707–2714

    Article  CAS  Google Scholar 

  • Mathis U, Kaegi R, Mohr M, Zenobi R (2004) TEM analysis of volatile nanoparticles from particle trap equipped diesel and direct-injection spark-ignition vehicles. Atmos Environ 38:4347–4355

    Article  CAS  Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  CAS  Google Scholar 

  • Paoletti L, De Berardis B, Arrizza L, Passacantando M, Inglessis M, Mosca M (2003) Seasonal effects on the physico-chemical characteristics of PM2.1 in Rome: a study by SEM and XPS. Atmos Environ 37:4869–4879

    Article  CAS  Google Scholar 

  • Penner JE (1995) Carbonaceous aerosol influencing atmospheric radiation: black carbon and organic carbon. In: Charlson RJ, Heintzenberg J (eds) Aerosol forcing of climate. Wiley, England, pp 91–108

    Google Scholar 

  • Pina AA, Villasenor GT, Fernandez MM, Kudra AL, Ramos RL (2000) Scanning electron microscope and statistical analysis of suspended heavy metal particles in San Luis Potosi, Mexico. Atmos Environ 34:4103–4112

    Article  CAS  Google Scholar 

  • Pina AA, Villasenor GT, Jacinto PS, Fernandez MM (2002) Scanning and transmission electron microscope of suspended lead-rich particles in the air of San Luis Potosi, Mexico. Atmos Environ 36:5235–5243

    Article  Google Scholar 

  • Pipal AS, Kulshrestha A, Taneja A (2011) Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India. Atmos Environ 45:3621–3630

    Article  CAS  Google Scholar 

  • Pósfai M, Simonics R, Li J, Hobbs PV, Buseck PR (2003) Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. J Geophys Res-Atmos 108, SAF 19/1–SAF 19/13

  • Quality of Urban Air Review Group (QUARG) (1996) Airborne particulate matter in the United Kingdom: 3rd report. Department of the Environment, London, pp 1–176

    Google Scholar 

  • Querol X, Alastuey A, Lopez-Soler A, Mantilla E, Plana F (1999) Mineralogy of atmospheric particles around a large coal-fire power station. Atmos Environ 30:3557–3572

    Article  Google Scholar 

  • Querol X, Alastuey A, de la Rosa J, Sanchez de la Campa A, Plana F, Ruiz CR (2002) Source apportionment analysis of atmospheric particulates in an industrialized urban site in southwestern Spain. Atmos Environ 36:3113–3125

    Google Scholar 

  • Rao PSP, Khemani LT, Momin GA, Safai PD, Pillari AG (1992) Measurements of wet and dry deposition at an urban location in India. Atmos Environ 26:73–78

    Article  Google Scholar 

  • Ro CU, Oh K-Y, Kim H, Chun Y, Osa′n J, Hoog J, Van Grieken R (2001) Chemical speciation of individual atmospheric particles using low-Z electron probe X-ray microanalysis: characterizing ‘‘Asian dust’’ deposited with rainwater in Seoul, Korea. Atmos Environ 35:4995–5005

    Google Scholar 

  • Rodriguez I, Gali S, Marcos C (2009) Atmospheric inorganic aerosol of a non-industrial city in the centre of an industrial region of the North of Spain, and its possible influence on the climate on a regional scale. Environ Geol 56:1551–1561

    Article  CAS  Google Scholar 

  • Safai PD, Rao PSP, Momin GA, Ali K, Chate DM, Praveen PS, Devera PCS (2005) Variation in the chemistry of aerosols in two different winter seasons at Pune and Sinhagad, India. Aerosol Air Qual Res 5(1):115–126

    CAS  Google Scholar 

  • Schwartz J, Dockery DW, Leas LM (1996) Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc 46:927–936

    Article  CAS  Google Scholar 

  • Shandilya KK, Kumar A (2010) Morphology of single inhalable particles inside public transit biodiesel fueled bus. J Environ Sci 22(2):263–270

    Article  CAS  Google Scholar 

  • Sharma S, Srinivas M (2009) Study of chemical composition and morphology of airborne particles in Chandigarh, India using EDXRF and SEM techniques. Environ Monit Assess 150:417–425

    Article  CAS  Google Scholar 

  • Shi Z, Shao L, Jones TP, Whittaker AG, Lu S, Berube KA (2003) Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Bei**g. Atmos Environ 37:4097–4108

    Article  CAS  Google Scholar 

  • Slezakova K, Pires JCM, Pereira MC, Martins FG, Alvin-Ferraz MC (2008) Influence of traffic emissions on the composition of atmospheric particles of different sizes-Part 2: SEM EDS characterization. J Atmos Chem 60:221–236

    Article  CAS  Google Scholar 

  • Srivastava A, Jain V, Srivastava A (2009) SEM–EDX analysis of various sizes aerosols in Delhi India. Environ Monit Assess 150:405–416

    Article  CAS  Google Scholar 

  • Suzuki K (2006) Characterization of airborne particulates and associated trace metals deposited on tree bark by ICP-OES, ICP-MS, SEM–EDX and laser ablation ICP-MS. Atmos Environ 40:2626–2634

    Article  CAS  Google Scholar 

  • Tripathi SN, Srivastava AK, Day S, Satheesh SK, Krishnamoorthy K (2007) The vertical profile of atmospheric heating rate of black carbon aerosols at Kanpur in northern India. Atmos Environ 41:6909–6915

    Article  CAS  Google Scholar 

  • Wheeler AJ, Williams I, Beaumont RA, Hamilton RS (2000) Characterisation of particulate matter sampled during a study of children’s personal exposure to airborne particulate matter in a UK urban environment. Environ Monit Assess 65:69–77

    Article  CAS  Google Scholar 

  • Wilson WE, Suh HH (1997) Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manag Assoc 47:1238–1249

    Article  CAS  Google Scholar 

  • **e RK, Seip HM, Liu L, Zhang DS (2009) Characterization of individual particles in Taiyuan city, China. Air Qual Atmos Health 2:123–131

    Article  CAS  Google Scholar 

  • Yue W, Li X, Liu J, Li Y, Yu X, Deng B (2006) Characterization of PM2.5 in the ambient of Shanghai city by analyzing individual particles. Sci Total Environ 368(2–3):916–925

    Article  CAS  Google Scholar 

  • Zhang Y, Carmichael GR (1999) The role of mineral aerosol in tropospheric chemistry in East Asia—a model study. J Appl Meteorol 38:353–366

    Article  Google Scholar 

  • Zhu Y, Hinds WC, Seongheon K, Shen S, Sioutas C (2002) Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ 36:4323–4335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Department of Science and Technology (DST No. SR/FTP/ES-91/2009), New Delhi and BCUD (BCUD/OSD/184 (Sr. No. 9), Pune, for financial assistance. Authors also express their gratitude to Head, Department of Chemistry, University of Pune, for his encouragement. Mr. Shinde and Mr. Jagtap, Department of Physics, University of Pune, are also acknowledged for analyzing the samples for SEM–EDS and XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Satsangi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satsangi, P.G., Yadav, S. Characterization of PM2.5 by X-ray diffraction and scanning electron microscopy–energy dispersive spectrometer: its relation with different pollution sources. Int. J. Environ. Sci. Technol. 11, 217–232 (2014). https://doi.org/10.1007/s13762-012-0173-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-012-0173-0

Keywords

Navigation