Log in

Deep eutectic solvent-based air-assisted liquid–liquid microextraction of lead in gasoline samples followed by graphite furnace atomic absorption spectrometry

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This paper describes determination of lead in gasoline by graphite furnace atomic absorption spectrometry after application of an air-assisted liquid–liquid microextraction method using deep eutectic solvent. In this study, for the first time, a ternary deep eutectic solvent was synthesized from menthol, mandelic acid, and glycolic acid and was used as a complexing agent and an extraction solvent, simultaneously. Under optimized conditions, the proposed method made possible the determination of lead in the range of 5–50 ng L−1 with a good linearity. The obtained detection and quantification limits were 1.6 and 5.0 ng L−1, respectively. Moreover, enrichment factor and extraction recovery values were 166 and 91.3%, respectively. The optimized and developed method was successfully used for the determination of lead in various gasoline samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AALLME:

Air-assisted liquid–liquid microextraction

DES:

Deep eutectic solvent

EF:

Enrichment factor

ER:

Extraction recovery

GFAAS:

Graphite furnace atomic absorption spectrometry

LOD:

Limit of detection

LOQ:

Limit of quantification

References

  1. R. Das, A.T.B.M. Mohtar, D. Rakshit, D. Shome, X. Wang, Atmos. Environ. 193, 57 (2018)

    Article  CAS  Google Scholar 

  2. A. Shishov, I. Gorbunov, A. Bulatov, Microchem. J. 130, 185 (2017)

    Article  CAS  Google Scholar 

  3. D. Jagner, L. Renman, Y. Wang, Anal. Chim. Acta 267, 165 (1992)

    Article  CAS  Google Scholar 

  4. O. Cankur, D. Korkmaz, O.Y. Ataman, Talanta 66, 789 (2005)

    Article  CAS  Google Scholar 

  5. J.M. Trindade, L.C. Martiniano, V.R.A. Gonçalves, A.G. Souza, A.L.B. Marques, G.L. Baugis, T.C.O. Fonseca, C. Song, J. Zhang, E.P. Marques, Fuel 91, 26 (2012)

    Article  CAS  Google Scholar 

  6. L.A. Meira, J.S. Almeida, F. de S. Dias, L.S.G. Teixeira, Microchem. J. 147, 660 (2019)

    Article  CAS  Google Scholar 

  7. P.N. Nomngongo, J.C. Ngila, Spectrochim. Acta Part B 98, 54 (2014)

    Article  CAS  Google Scholar 

  8. L. Kolling, A.V. Zmozinski, M.G. Rodrigues Vale, M.M. da Silva, Talanta 205, 120105 (2019)

    Article  CAS  Google Scholar 

  9. M.L. Wald, EPA Process New Limits on Lead in the Air, The First Revision in 30 years (2008). https://www.nytimes.com/2008/05/02/washington/02epa.html

  10. E.J. Underwood, Phil. Trans. 288, 5 (1979)

    CAS  Google Scholar 

  11. J.G. Speight, The Chemistry and Technology of Petroleum (Taylor & Francis Group, New York, 2006)

    Book  Google Scholar 

  12. C.C. Leite, A. de Jesus, L. Kolling, M.F. Ferrão, D. Samios, M.M. Silva, Spectrochim. Acta Part B 142, 62 (2018)

    Article  CAS  Google Scholar 

  13. P.N. Nomngongo, J.C. Ngila, Fuel 139, 285 (2015)

    Article  CAS  Google Scholar 

  14. M.N. Reyes, R.C. Campos, Spectrochim. Acta Part B 60, 615 (2005)

    Article  Google Scholar 

  15. Y. Liu, Y. Wang, Y. Hu, L. Ni, J. Han, T. Chen, H. Chen, Y. Liu, J. Iran. Chem. Soc. 12, 371 (2015)

    Article  CAS  Google Scholar 

  16. M. Shamsipur, N. Fattahi, M. Sadeghi, M. Pirsaheb, J. Iran. Chem. Soc. 11, 249 (2014)

    Article  CAS  Google Scholar 

  17. M. Ozcan, S. Akman, Spectrochim. Acta Part B 60, 399 (2005)

    Article  Google Scholar 

  18. F.A.S. Cunha, D.T.S. Ferreira, W.C.R. Andrade, J.P.A. Fernandes, W.S. Lyra, A.G.G. Pessoa, M.C.U. de Araujo, Microchim. Acta 99, 185 (2018)

    Google Scholar 

  19. S.N. Do Carmo, F.Q. Damásio, V.N. Alves, T.L. Marques, N.M.M. Coelho, Microchem. J. 110, 320 (2013)

    Article  CAS  Google Scholar 

  20. M.S. Jagirani, F. Uzcan, M. Soylak, J. Iran. Chem. Soc. 18, 1005 (2021)

    Article  CAS  Google Scholar 

  21. Z. Erbas, M. Soylak, S. Ozdemir, E. Kilinc, Microchem. J. 99, 1112 (2019)

    CAS  Google Scholar 

  22. N. Baroumand, A. Akbari, M. Shirani, Z. Shokri, Water Air Soil Pollut. 226, 2254 (2015)

    Article  Google Scholar 

  23. S.M. Sorouraddin, M.A. Farajzadeh, T. Okhravi, Int. J. Environ. Anal. Chem. 99, 124 (2019)

    Article  CAS  Google Scholar 

  24. J. Werner, Talanta 182, 69 (2018)

    Article  CAS  Google Scholar 

  25. M. Sadeghi, F. Shiri, D. Kordestani, P. Mohammadi, A. Alizadeh, J. Iran. Chem. Soc. 15, 753 (2018)

    Article  CAS  Google Scholar 

  26. S.M. Sorouraddin, J. Iran. Chem. Soc. 13, 2219 (2016)

    Article  CAS  Google Scholar 

  27. M. Shirani, S. Habibollahi, A. Akbari, Food Chem. 281, 304 (2019)

    Article  CAS  Google Scholar 

  28. M. Rezaee, Y. Assadi, M.R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A 1116, 1 (2006)

    Article  CAS  Google Scholar 

  29. M.A. Farajzadeh, M.R. Afshar Mogaddam, Anal. Chim. Acta 728, 31 (2012)

    Article  CAS  Google Scholar 

  30. E. Bağda, H. Altundağ, M. Tüzen, M. Soylak, Bull. Environ. Contam. Toxicol. 99, 264 (2017)

    Article  Google Scholar 

  31. M. Ezoddin, N. Lamei, F. Siami, K. Abdi, M.A. Karimi, Bull. Environ. Contam. Toxicol. 101, 814 (2018)

    Article  CAS  Google Scholar 

  32. M.A. Farajzadeh, A.S. Hojaghan, M.R. Afshar Mogaddam, J. Food Compos. Anal. 66, 90 (2018)

    Article  CAS  Google Scholar 

  33. R.N. Sylva, P.L. Brown, J. Chem. Soc. Dalton Trans. 9, 1577 (1980)

    Article  Google Scholar 

  34. P.L. Brown, C. Ekberg, in Hydrolysis of Metal Ions, Chapter 14: Tin and Lead (Wiley, 2016), pp. 835–872

  35. M. Thompson, S.L.R. Ellison, R. Wood, Pure Appl. Chem. 74, 835 (2002)

    Article  CAS  Google Scholar 

  36. J.O. Vinhal, R.J. Cassella, Spectrochim. Acta Part B 151, 33 (2019)

    Article  CAS  Google Scholar 

  37. R.J. Cassella, D.M. Brum, C.F. Lima, T.C.O. Fonseca, Fuel Process. Technol. 92, 933 (2011)

    Article  CAS  Google Scholar 

  38. J.S. Almeida, O.C.C.O. Souza, L.S.G. Teixeira, Microchem. J. 137, 22 (2018)

    Article  CAS  Google Scholar 

  39. M.S. Luz, A.N. Nascimento, P.V. Oliveira, Talanta 115, 409 (2013)

    Article  CAS  Google Scholar 

  40. F.A.S. Cunha, R.A. Sousa, D.P. Harding, S. Cadore, L.F. Almeida, M.C.U. Araújo, Anal. Chim. Acta 727, 34 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Research Council of the University of Tabriz for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mohammad Sorouraddin.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 309 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorouraddin, S.M., Farajzadeh, M.A., Dastoori, H. et al. Deep eutectic solvent-based air-assisted liquid–liquid microextraction of lead in gasoline samples followed by graphite furnace atomic absorption spectrometry. J IRAN CHEM SOC 19, 2591–2599 (2022). https://doi.org/10.1007/s13738-021-02481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02481-9

Keywords

Navigation