Log in

Usage of deep eutectic solvents for the digestion and ultrasound-assisted liquid phase microextraction of copper in liver samples

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, we used deep eutectic solvents for digestion and ultrasound-assisted emulsification liquid phase microextraction (UA-ELPME) of copper in liver samples. Different types of DESs were prepared for digestion and microextraction steps. DESs consisting of lactic acid and choline chloride for the digestion step and DESs consisting of tetrabuthylamonium chloride and decanoic acid for ultrasound-assisted emulsification liquid phase microextraction were used in this method. The liver samples were digested by using DES-based digestion method. After digestion step, Cu(II) ions in aqueous phase were complexed with sodium dimethyl dithiocarbamate (NaDMDTC) and the obtained hydrophobic complex was extracted to tetrabuthylamonium chloride-decanoic acid DES phase. A microsample injection system coupled with flame atomic absorption spectrometer (MS-FAAS) was used in the detection of copper. LOD, LOQ, PF and % RSD were determined as 4.00, 13.2 µg L− 1, 10 and 3.2%, respectively. The proposed microextraction procedure was successfully applied to copper contents of the liver samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Soylak, Y.E. Unsal, M. Tuzen, Evaluation of metal contents of household detergent samples from Turkey by flame atomic absorption spectrometry. Environ. Monit. Assess. 185(11), 9663–9668 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. A.H. Dokmeci, Evaluation of heavy metal pollution in the Ergene River Basin from a public health perspective. Turk. J. Public Health 15(2), 213–221 (2017)

    Google Scholar 

  3. F.B. Alkas, J.A. Shaban, A.A. Sukuroglu, M.A. Kurt, D. Battal, S. Saygi, Monitoring and assessment of heavy metal/metalloid concentration by inductively coupled plasma mass spectroscopy (ICP-MS) method in Gonyeli Lake. Cyprus. Environ. Monit. Assess. 189, 516 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. M. Soylak, A. Uzun, L. Elci, Chemical analysis of industrial waste water samples from some metal and textile plants in the organized industrial region of Kayseri, Turkey. Kuwait J. Sci. Eng. 28(1), 151–160 (2001)

    CAS  Google Scholar 

  5. C.M.A. Iwegbue, G.O. Tesi, L.C. Overah, G.E. Nwajei, B.S. Martincigh, Chemical fractionation and mobility of metals in floodplain soils of the lower reaches of the River Niger, Nigeria. Trans. R. Soc. S. Afr. 73(1), 90–109 (2018)

    Article  Google Scholar 

  6. M.S. Dundar, H. Altundag, A. Yilmaz, Heavy metal determination of unfertilised vegetables and univariate analysis of the results. J. Chem. Metrol. 11, 23–31 (2017)

    Article  Google Scholar 

  7. D. Ozdes, A. Gundogdu, B. Kemer, C. Duran, H.B. Senturk, M. Soylak, Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study. J. Hazard. Mater. 166(2–3), 1480–1487 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. D. Mendil, Z. Demirci, M. Tuzen, M. Soylak, Seasonal investigation of trace element contents in commercially valuable fish species from the Black sea, Turkey. Food Chem. Toxicol. 48(3), 865–870 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. H. Tavallali, H. Malekzadeh, F. Dadvar, M. Tabandeh, M. Haghshenas, Chemically functionalized γ-alumina with Alizarin red-s for separation and determination of trace amounts of Pb(II) and Ag(I) ions by solid phase extraction–Flame Atomic Absorption Spectrometry in environmental and biological samples. Arab. J. Chem. 10(2), 2090–2097 (2017)

    Article  CAS  Google Scholar 

  10. E. Vessally, E. GhorbaniKalhor, R. HosseinzadehKhanmiri, M. Babazadeh, A. Hosseinian, F. Omidi, M.H. Ebrahimi, Application of switchable solvent-based liquid phase microextraction for preconcentration and trace detection of cadmium ions in baby food samples. J. Iran. Chem. Soc. 15(2), 491–498 (2018)

    Article  CAS  Google Scholar 

  11. M. Tuzen, M. Soylak, Column solid-phase extraction of nickel and silver in environmental samples prior to their flame atomic absorption spectrometric determinations. J. Hazard. Mater. 164(2–3), 1428–1432 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. U. Ecer, T. Sahan, A response surface approach for optimization of pb(Ii) biosorption conditions from aqueous environment with Polyporus squamosus fungi as a new biosorbent and kinetic, equilibrium and thermodynamic studies. Desalin. Water Treat. 102, 229–240 (2018)

    Article  Google Scholar 

  13. M. Soylak, L. Elci, M. Dogan, Determination of some trace metal impurities in refined and unrefined salts after preconcentration onto activated carbon. Fresen. Environ. Bull. 5, 148–155 (1996)

    CAS  Google Scholar 

  14. A. Shokrollahi, M. Ghaedi, O. Hossaini, N. Khanjari, M. Soylak, Cloud point extraction and flame atomic absorption spectrometry combination for copper(II) ion in environmental and biological samples. J. Hazard. Mater. 160(2–3), 435–440 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. S. Armenta, F.A. Esteve-Turrillas, S. Garrigues, M. de la Guardia, Green extraction techniques: principles, advances and applications. Compr. Anal. Chem. 76, 1–25 (2017)

    Article  Google Scholar 

  16. Z.A. ALOthman, M. Habila, E. Yilmaz, M. Soylak, A dispersive liquid-liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry. J. AOAC Int. 96, 1425–1429 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. A. Gałuszka, Z. Migaszewski, J. Namieśnik, The 12 principles of green analytical chemistry and the sıgnıfıcance memonic of green analytical practices. TrAC-Trend Anal. Chem. 50, 78–84 (2013)

    Article  CAS  Google Scholar 

  18. M. Espino, F.M. de los Ángeles, F.J. Gomez, M.F. Silva, Natural designer solvents for greening analytical chemistry. TrAC-Trend Anal. Chem. 76, 126–136 (2016)

    Article  CAS  Google Scholar 

  19. J. Claus, F.O. Sommer, U. Kragl, Ionic liquids in biotechnology and beyond. Solid State Ionics 314, 119–128 (2018)

    Article  CAS  Google Scholar 

  20. M.E. Lee, E.-K. Jeon, D.C.W. Tsang, K. Baek, Simultaneous application of oxalic acid and dithionite for enhanced extraction of arsenic bound to amorphous and crystalline iron oxides. J. Hazard. Mater. 354, 91–98 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. D. Azizi, F. Larachi, Immiscible dual ionic liquid-ionic liquid mineral separation of rare-earth minerals. Sep. Purif. Technol. 191, 340–353 (2018)

    Article  CAS  Google Scholar 

  22. K.M. Docherty, C.F. Kulpa Jr., Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 7(4), 185–189 (2005)

    Article  CAS  Google Scholar 

  23. T.P.T. Pham, C.W. Cho, Y.S. Yun, Environmental fate and toxicity of ionic liquids. Water Res. 44(2), 352–372 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. A. Shishov, A. Bulatov, M. Locatelli, S. Carradori, V. Andruch, Application of deep eutectic solvents in analytical chemistry. Microchem. J. 135, 33–38 (2017)

    Article  CAS  Google Scholar 

  25. E. Yilmaz, M. Soylak, Ultrasound assisted-deep eutectic solvent extraction of iron from sheep, bovine and chicken liver samples. Talanta 136, 170–173 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. F. Aydin, E. Yilmaz, M. Soylak, A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchem. J. 132, 280–285 (2017)

    Article  CAS  Google Scholar 

  27. H. Shekaari, M.T. Zafarani-Moattar, A. Shayanfar, M. Mokhtarpour, Effect of choline chloride/ethylene glycol or glycerol as deep eutectic solvents on the solubility and thermodynamic properties of acetaminophen. J. Mol. Liq. 249, 1222–1235 (2018)

    Article  CAS  Google Scholar 

  28. I. Juneidi, M. Hayyan, M.A. Hashim, Pure and aqueous deep eutectic solvents for a lipase catalysed hydrolysis reaction. Process Biochem. 117, 129–138 (2017)

    CAS  Google Scholar 

  29. A. Ghoorchian, F. Tavoli, N. Alizadeh, Long-term stability of nanostructured polypyrrole electrochromic devices by using deep eutectic solvents. J. Electroanal. Chem. 807, 70–75 (2017)

    Article  CAS  Google Scholar 

  30. S. Fryars, E. Limanton, F. Gauffre, L. Paquin, C. Lagrost, P. Hapiot, Diffusion of redox active molecules in deep eutectic solvents. J. Electroanal. Chem. 819, 214–219 (2018)

    Article  CAS  Google Scholar 

  31. M. Atilhan, L.T. Costa, S. Aparicio, On the behaviour of aqueous solutions of deep eutectic solvents at lipid biomembranes. J. Mol. Liq. 247, 116–125 (2017)

    Article  CAS  Google Scholar 

  32. A.A. Samarov, M.A. Smirnov, M.P. Sokolova, E.N. Popova, A.M. Toikka, Choline chloride based deep eutectic solvents as extraction media for separation of n-hexane–ethanol mixture. Fluid Phase Equilib. 448, 123–127 (2017)

    Article  CAS  Google Scholar 

  33. C.M. Lin, R.B. Leron, A.R. Caparanga, M.H. Li, Henry’s constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems. J. Chem. Thermodyn. 68, 216–220 (2014)

    Article  CAS  Google Scholar 

  34. G.T. Wei, Z. Yang, C.J. Chen, Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Anal. Chim. Acta 488(2), 183–192 (2003)

    Article  CAS  Google Scholar 

  35. X. Mao, H. Chen, J. Liu, Determination of trace amount of silver by atomic-absorption-spectrometry-coupled flow injection on-line coprecipitation preconcentration using DDTC–copper as coprecipitate carrier. Microchem. J. 59(3), 383–391 (1998)

    Article  CAS  Google Scholar 

  36. M. Soylak, E. Yilmaz, M. Ghaedi, M. Montazerozohori, M. Sheibani, Cloud point extraction and flame atomic absorption spectrometry determination of lead (II) in environmental and food samples. J. AOAC Int. 95(6), 1797–1802 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. S.H. Huo, X.P. Yan, Facile magnetization of metal-organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples. Analyst 137(15), 3445–3451 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. M. Soylak, E. Yilmaz, Ionic liquid-based method for microextraction/enrichment of gold from real samples and determination by flame atomic absorption spectrometry. Atomic Spectrosc. 34(1), 15–19 (2013)

    CAS  Google Scholar 

  39. M.H. Mashhadizadeh, M. Amoli-Diva, M.R. Shapouri, H. Afruzi, Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles. Food Chem. 151, 300–305 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. M. Soylak, U. Divrikli, M. Dogan, Column separation and enrichment of trace amounts of Cu, Ni and Fe on XAD-16 resin in industrial fertilisers after complexation with 4-(2-Thiazolylazo) resorcinol. J. Trace Microprobe T. 15, 197–204 (1997)

    CAS  Google Scholar 

  41. M. Akhond, G. Absalan, T. Pourshamsi, A.M. Ramezani, Gas-assisted dispersive liquid-phase microextraction using ionic liquid as extracting solvent for spectrophotometric speciation of copper. Talanta 154, 461–466 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. N. Khorshidi, A. Niazi, Analytical approaches for the determination of cobalt, nickel and copper by aeration-assisted homogeneous liquid–liquid microextraction and flame atomic absorption spectrometry. Sep. Sci. Technol. 51(10), 1675–1683 (2016)

    Article  CAS  Google Scholar 

  43. J.F. Ayala-Cabrera, M.J. Trujillo-Rodríguez, V. Pino, O.M. Hernández-Torres, A.M. Afonso, J. Sirieix-Plénet, Ionic liquids versus ionic liquid-based surfactants in dispersive liquid–liquid microextraction for determining copper in water by flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 96(2), 101–118 (2016)

    Article  CAS  Google Scholar 

  44. Z.A. ALOthman, M. Habila, E. Yilmaz, M. Soylak, Solid phase extraction of Cd(II), Pb(II), Zn(II) and Ni(II) from food samples using multiwalled carbon nanotubes impregnated with 4-(2-Thiazolylazo) resorcinol. Microchim. Acta 177, 397–403 (2012)

    Article  CAS  Google Scholar 

  45. G. Guven, H.C. Soyleyici, İzonitrosoasetofenon antranolhidrazin ile modifiye edilmiş silika jel kullanilarak Cu(II) İyonunun zenginleştirilmesi. Igdir Univ. J. Inst. Sci. Tech. 7(4), 141–149 (2017)

    Article  Google Scholar 

  46. A. Daneshfar, M. Ghaedi, S. Vafafard, L. Shiri, R. Sahrai, M. Soylak, Amberlite IR-120 modified with 8-hydroxyquinoline as efficient adsorbent for solid phase extraction and flame atomic absorption determination of some trace metal ions. Biol. Trace Elem. Res. 145, 240–247 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. V. Zarezade, A. Aliakbari, M. Es’haghi, M.M. Amini, M. Behbahani, F. Omidi, G. Hesam, Application of a new nanoporous sorbent for extraction and pre-concentration of lead and copper ions. Int. J. Environ. Anal. Chem. 97(4), 383–397 (2017)

    Article  CAS  Google Scholar 

  48. M. Ghaedi, F. Ahmadi, M. Soylak, Simultaneous preconcentration of copper, nickel, cobalt and lead ions prior to their flame atomic absorption spectrometric determination. Ann. Chim.-Rome 97, 277–285 (2007)

    Article  CAS  Google Scholar 

  49. M. Soylak, E. Kiranartligiller, A simple vortex-assisted dispersive liquid–liquid microextraction system for copper (II) to preconcentration and separation from natural water and table salt samples. Arab. J. Sci. Eng. 42(1), 175–181 (2017)

    Article  CAS  Google Scholar 

  50. G. Khayatian, M. Hassanpour, Ion pair dispersive liquid-liquid microextraction for the determination of trace amounts of copper (II) in soil, multivitamin tablet, tea and water samples using flame atomic absorption spectrometry. Anal. Bioanal. Chem. Res 5(1), 11–21 (2018)

    Google Scholar 

  51. C. Karadaş, D. Kara, Dispersive liquid–liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry. Food Chem. 220(1), 242–248 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. Z. Doroudi, A. Niazi, Ultrasound-assisted emulsification–microextraction and spectrophotometric determination of cobalt, nickel and copper after optimization based on Box-Behnken design and chemometrics methods. Pol. J. Chem. Technol. 20(1), 21–28 (2018)

    Article  CAS  Google Scholar 

  53. R. Kashanaki, H. Ebrahimzadeh, M. Moradi, Metal–organic framework based micro solid phase extraction coupled with supramolecular solvent microextraction to determine copper in water and food samples. New J. Chem. 42(8), 5806–5813 (2018)

    Article  CAS  Google Scholar 

  54. N. Limchoowong, P. Sricharoen, S. Techawongstien, S. Chanthai, Using bio-dispersive solution of chitosan for green dispersive liquid–liquid microextraction of trace amounts of Cu (II) in edible oils prior to analysis by ICP–OES. Food Chem. 230, 398–404 (2017)

    Article  CAS  PubMed  Google Scholar 

  55. M.S. Arain, T.G. Kazi, H.I. Afridi, J. Ali, A. Akhtar, Ultrasonic energy enhanced the efficiency of advance extraction methodology for enrichment of trace level of copper in serum samples of patients having neurological disorders. Ultrason. Sonochem. 37, 23–28 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. V. Zare-Shahabadi, P. Asaadi, F. Abbasitabar, A. Shirmardi, Determination of traces of Ni, Cu, and Zn in wastewater and alloy samples by flame-AAS after ionic liquid-based dispersive liquid phase microextraction. J. Brazil. Chem. Soc. 28(5), 887–894 (2017)

    CAS  Google Scholar 

  57. M.A. Farajzadeh, M. Bahram, B.G. Mehr, J.A. Jönsson, Optimization of dispersive liquid–liquid microextraction of copper (II) by atomic absorption spectrometry as its oxinate chelate: application to determination of copper in different water samples. Talanta 75(3), 832–840 (2008)

    Article  CAS  PubMed  Google Scholar 

  58. O. Arslan, C.Karadas,D. Kara, Simultaneous Preconcentration of copper and cadmium by dispersive liquid–liquid microextraction using N, N′-Bis (2-Hydroxy-5-Bromo-Benzyl) 1, 2 diaminopropane and their determination by flame atomic absorption spectrometry. J. AOAC Int. 99(5), 1356–1362 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Soylak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanberoglu, G.S., Yilmaz, E. & Soylak, M. Usage of deep eutectic solvents for the digestion and ultrasound-assisted liquid phase microextraction of copper in liver samples. J IRAN CHEM SOC 15, 2307–2314 (2018). https://doi.org/10.1007/s13738-018-1419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1419-7

Keywords

Navigation