Log in

In situ-produced CO2-assisted dispersive liquid–liquid microextraction for extraction and preconcentration of cobalt, nickel, and copper ions from aqueous samples followed by graphite furnace atomic absorption spectrometry determination

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present work, a new microextraction technique, namely in situ-produced CO2-assisted dispersive liquid–liquid microextraction was introduced for the extraction and preconcentration of cobalt, nickel, and copper from aqueous samples followed by graphite furnace atomic absorption spectrometry detection. The proposed method relies on the CO2 gas produced due to a chemical reaction as the disperser agent instead of the disperser solvent used in the conventional dispersive liquid–liquid microextraction. Initially, a solid mixture of tartaric acid and sodium bicarbonate was placed in the bottom of a dry conical glass test tube. Then µL level of 1,1,2,2-tetrachloroethane as the extraction solvent was added into the tube. An aqueous solution of the analytes containing sodium diethyldithiocarbamate (as chelating agent) was transferred into the tube. The reaction between tartaric acid and sodium bicarbonate was immediately occurred, and the produced CO2 led to dispersion of the extraction solvent as tiny droplets into the sample which resulted in extraction of the analytes into the organic solvent. The cloudy solution was centrifuged, and the sedimented phase was analyzed by the instrumental analytical method. Under the optimum conditions, the calibration curves were linear in the ranges of 20–300, 20–200, and 15–250 ng L−1 for Co2+, Ni2+, and Cu2+, respectively. Repeatability of the proposed method, expressed as relative standard deviation, ranged from 2.3 to 4.6 and 4.5–5.6% for intra- and inter-day (n = 6, C = 50 ng L−1) precisions, respectively. Moreover, the detection limits and enrichment factors of the selected analytes were obtained in the ranges of 6.2–12 and 139–150 ng L−1, respectively. The accuracy of the developed procedure was checked by analyzing NRCC-SLRS4 Riverine water as a certified reference material. Finally, the proposed method was successfully applied for the simultaneous analysis of the selected analytes in environmental water and fruit juice samples. The relative recoveries obtained for the analytes in the spiked samples were within in the range of 84–107%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AALLME:

Air-assisted liquid–liquid microextraction

1,2-DBE:

1,2-Dibromoethane

DLLME:

Dispersive liquid–liquid microextraction

ER:

Extraction recovery

GFAAS:

Graphite furnace atomic absorption spectrometry

LLE:

Liquid–liquid extraction

LPME:

Liquid-phase microextraction

LOD:

Limit of detection

LOQ:

Limit of quantification

MSPD:

Matrix solid-phase dispersion

RSD:

Relative standard deviation

SALLME:

Salt-assisted liquid–liquid microextraction

SDDTC:

Sodium diethyldithiocarbamate

SPE:

Solid-phase extraction

SPME:

Solid-phase microextraction

SBSE:

Stir bar sorptive extraction

1,1,2,2-TCE:

1,1,2,2-Tetrachloroethane

1,1,2-TCE:

1,1,2-Trichloroethane

UDSA–DLLME:

Up-and-down shaker-assisted dispersive liquid–liquid microextraction

References

  1. Y. Wang, X. Ke, X. Zhou, J. Li, J. Ma, J. Saudi Chem. Soc. 20, S145 (2016)

    Article  CAS  Google Scholar 

  2. C.E. Borba, R. Guirardello, E.A. Silva, M.T. Veit, C.R.G. Tavares, Biochem. Eng. J. 30, 184 (2006)

    Article  CAS  Google Scholar 

  3. F. Fu, Q. Wang, J. Environ. Manag. 92, 407 (2011)

    Article  CAS  Google Scholar 

  4. A.T. Paulino, F.A.S. Minasse, M.R. Guilherme, A.V. Reis, E.C. Muniz, J. Nozaki, J. Colloid Interface Sci. 301, 479 (2006)

    Article  CAS  Google Scholar 

  5. A. Oliva, A. Molinari, F. Zuniga, P. Ponce, Microchim. Acta 140, 201 (2002)

    Article  CAS  Google Scholar 

  6. T. Daşbaşı, Ş. Saçmacı, N. Çankaya, C. Soykan, Food Chem. 211, 68 (2016)

    Article  Google Scholar 

  7. D. Citak, M. Tuzen, Food Chem. Toxicol. 48, 1399 (2010)

    Article  CAS  Google Scholar 

  8. A.K. Malik, V. Kaur, N. Verma, Talanta 68, 842 (2006)

    Article  CAS  Google Scholar 

  9. X.P. Yao, Z.J. Fu, Y.G. Zhao, L. Wang, L.Y. Fang, H.Y. Shen, Talanta 97, 124 (2012)

    Article  CAS  Google Scholar 

  10. X. Huang, N. Qiu, D. Yuan, B. Huang, Talanta 78, 101 (2009)

    Article  CAS  Google Scholar 

  11. M.A. Farajzadeh, S.M. Sorouraddin, M.R. Afshar Mogaddam, Microchim. Acta 181, 829 (2014)

    Article  CAS  Google Scholar 

  12. P. Liang, R. Liu, J. Cao, Microchim. Acta 160, 135 (2008)

    Article  CAS  Google Scholar 

  13. Y. Liu, Y. Wang, Y. Hu, L. Ni, J. Han, T. Chen, H. Chen, Y. Liu, J. Iran. Chem. Soc. 12, 371 (2015)

    Article  CAS  Google Scholar 

  14. J. Abulhassani, J.L. Manzoori, M. Amjadi, J. Hazard. Mater. 176, 481 (2010)

    Article  CAS  Google Scholar 

  15. M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A 1116, 1 (2006)

    Article  CAS  Google Scholar 

  16. Y. Yamini, M. Rezaee, A. Khanchi, M. Faraji, A. Saleh, J. Chromatogr. A 1217, 2358 (2010)

    Article  CAS  Google Scholar 

  17. H. Sereshti, V. Khojeh, S. Samadi, Talanta 83, 885 (2011)

    Article  CAS  Google Scholar 

  18. M. Mirzaei, M. Behzadi, N.M. Abadi, A. Beizaei, J. Hazard. Mater. 186, 1739 (2011)

    Article  CAS  Google Scholar 

  19. M. Shamsipur, N. Fattahi, M. Sadeghi, M. Pirsaheb, J. Iran. Chem. Soc. 11, 249 (2014)

    Article  CAS  Google Scholar 

  20. S.P. Chu, W.C. Tseng, P.H. Kong, C.K. Huang, J.H. Chen, P.S. Chen, S.D. Huang, Food Chem. 185, 377 (2015)

    Article  CAS  Google Scholar 

  21. N. Wei, X.E. Zhao, S. Zhu, Y. He, L. Zheng, G. Chen, J. You, S. Liu, Z. Liu, Talanta 161, 253 (2016)

    Article  CAS  Google Scholar 

  22. Naeemullah, M. Tuzen, T.G. Kazi, D. Citak, M. Soylak, J. Anal. At. Spectrom. 28, 1441 (2013)

    Article  CAS  Google Scholar 

  23. M.A. Farajzadeh, M.R. Afshar Mogaddam, Anal. Chim. Acta 728, 31 (2012)

    Article  CAS  Google Scholar 

  24. M. Soylak, E. Kiranartligiller, Arab. J. Sci. Eng. 42, 175 (2017)

    Article  CAS  Google Scholar 

  25. J. Xue, X. Chen, W. Jiang, F. Liu, H. Li, J. Chromatogr. B 975, 9 (2015)

    Article  CAS  Google Scholar 

  26. G.L. Aragonés, R. Lucena, S. Cárdenas, M. Valcárcel, Anal. Chim. Acta 807, 61 (2014)

    Article  Google Scholar 

  27. K. Medinskaia, C. Vakh, D. Aseeva, V. Andruch, L. Moskvin, A. Bulatov, Anal. Chim. Acta 902, 129 (2016)

    Article  CAS  Google Scholar 

  28. M. Gupta, A. Jain, K.K. Verma, Talanta 80, 526 (2009)

    Article  CAS  Google Scholar 

  29. H. Ma, Y. Li, H. Zhang, S.M. Shah, J. Chen, J. Chromatogr. A 1358, 14 (2014)

    Article  CAS  Google Scholar 

  30. I. Rapp, Ch. Schlosser, D. Rusiecka, M. Gledhill, E.P. Achterberg, Anal. Chim. Acta 976, 1 (2017)

    Article  CAS  Google Scholar 

  31. L. Hejazi, D.E. Mohammadi, Y. Yamini, R.G. Brereton, Talanta 62, 185 (2004)

    Article  CAS  Google Scholar 

  32. S.M. Sorouraddin, M.A. Farajzadeh, T. Okhravi, Talanta 175, 359 (2017)

    Article  CAS  Google Scholar 

  33. M. Niinae, T. Suzuki, Y. Inoue, H. Saito, J. Shibata, J. Min. Mater. Process. Inst. Jpn. 130, 16 (2014)

    CAS  Google Scholar 

  34. V.T. Nguyen, J.C. Lee, J. Jeong, B.S. Kim, B.D. Pandey, Met. Mater. Int. 20, 357 (2014)

    Article  CAS  Google Scholar 

  35. P. Liang, J. Yu, E. Yang, Y. Mo, Food Anal. Methods 7, 1506 (2014)

    Article  Google Scholar 

  36. H. Jiang, Y. Qin, B. Hu, Talanta 74, 1160 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Office at the University of Tabriz for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mohammad Sorouraddin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorouraddin, S.M., Farajzadeh, M.A. & Ghorbani, M. In situ-produced CO2-assisted dispersive liquid–liquid microextraction for extraction and preconcentration of cobalt, nickel, and copper ions from aqueous samples followed by graphite furnace atomic absorption spectrometry determination. J IRAN CHEM SOC 15, 201–209 (2018). https://doi.org/10.1007/s13738-017-1224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1224-8

Keywords

Navigation