Log in

PFSA-TiO2(or Al2O3)-PVA/PVA/PAN difunctional hollow fiber composite membranes prepared by dip-coating method

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

PFSA-TiO2(or Al2O3)-PVA/PVA/PAN difunctional hollow fiber composite membranes with separation performance and catalytic activity have been prepared by dip-coating method. The good separation performance was brought about by the glutaraldehyde (GA) surface cross-linked PVA/PAN composite membrane, and the good catalytic activity of the membrane was achieved by the perfluorosulphonic acid (PFSA) used. The difunctional hollow fiber membranes were characterized by XRD, TGA, EDX, SEM, and FTIR. The separation performance was measured by dehydration of azeotropic top product of ethanol-acetic acid esterification, and the catalytic activity was obtained by investigating the esterification of ethanol and acetic acid. The FTIR spectra and the morphologies of difunctional hollow fiber composite membranes were similar for samples prior to esterification and post-esterification with ethanol and acetic acid for 24 h. Difunctional hollow fiber composite membranes with 2% PFSA, 8% TiO2 (named as DM-T1), and 2% PFSA, 8% Al2O3 (named as DM-A1) (all by weights) showed the best catalytic activity. They displayed fluxes of 165 and 173 g/mh, separation factors of water to ethanol of 279 and 161, PFSA contents in difunctional hollow fiber composite membrane of 3.2 and 2.4%, the ratios of PFSA to feed solution (acetic acid–ethanol) of 0.031 and 0.023%, and the equilibrium conversion of ethanol at 53.5 and 57.6%, in the given order for TiO2 and Al2O3 containing samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li B, Zhao W, Su YL, Jiang ZY, Dong X, Liu WP (2009) Enhanced desulfurization performance and swelling resistance of asymmetric hydrophilic pervaporation membrane prepared through surface segregation technique. J Membr Sci 326:556–563

    Article  CAS  Google Scholar 

  2. Huang YW, Zhang P, Fu JW, Zhou YB, Huang XB, Tang XZ (2009) Pervaporation of ethanol aqueous solution by polydimethylsiloxane/polyphosphazene nanotube nanocomposite membranes. J Membr Sci 339:85–92

    Article  CAS  Google Scholar 

  3. Zhao Q, Qian JW, An QF, Gui ZL, ** HT, Yin MJ (2009) Pervaporation dehydration of isopropanol using homogeneous polyelectrolyte complex membranes of poly(diallyldimethylammonium chloride)/sodium carboxymethyl cellulose. J Membr Sci 329:175–182

    Article  CAS  Google Scholar 

  4. Li SY, Srivastava R, Parnas RS (2010) Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. J Membr Sci 363:287–294

    Article  CAS  Google Scholar 

  5. Tanaka S, Chao YA, Araki S, Miyake Y (2010) Pervaporation characteristics of pore-filling PDMS/PMHS membranes for recovery of ethylacetate from aqueous solution. J Membr Sci 348:383–388

    Article  CAS  Google Scholar 

  6. Shao P, Huang RYM (2007) Polymeric membrane pervaporation. J Membr Sci 287:162–179

    Article  CAS  Google Scholar 

  7. Yahaya GO (2008) Separation of volatile organic compounds (BTEX) from aqueous solutions by a composite organophilic hollow fiber membrane-based pervaporation process. J Membr Sci 319:82–90

    Article  CAS  Google Scholar 

  8. Zhao CW, Li JD, Qi RB, Chen J, Luan ZK (2008) Pervaporation separation of n-heptane/sulfur species mixtures with polydimethylsiloxane membranes. Sep Purif Technol 63:220–225

    Article  CAS  Google Scholar 

  9. Hasanoğlu A, Salt Y, Keleşer S, Dinçer S (2009) The esterification of acetic acid with ethanol in a pervaporation membrane reactor. Desalination 245:662–669

    Article  Google Scholar 

  10. Feng XS, Huang RYM (1996) Studies of a membrane reactor: esterification facilitated by pervaporation. Chem Eng Sci 51:4673–4679

    Article  CAS  Google Scholar 

  11. Liu QL, Zhang ZB, Chen HF (2001) Study on the coupling of esterification with pervaporation. J Membr Sci 182:173–181

    Article  CAS  Google Scholar 

  12. Figueiredo KCS, Salim VM, Borges CP (2008) Synthesis and characterization of a catalytic membrane for pervaporation-assisted esterification reactors. Catal Today 133–135:809–814

    Article  Google Scholar 

  13. Ma XH, Xu ZL, Liu Y, Sun D (2010) Preparation and characterization of PFSA-PVA-SiO2/PVA/PAN difunctional hollow fiber composite membranes. J Membr Sci 360:315–322

    Article  CAS  Google Scholar 

  14. Yuan GL, Xu ZL, Wei YM (2009) Characterization of PVDF-PFSA hollow fiber UF blend membrane with low-molecular weight cut-off. Purif Technol 69:141–148

    Article  CAS  Google Scholar 

  15. Lang WZ, Xu ZL, Yang H, Tong W (2007) Preparation and characterization of PVDF-PFSA blend hollow fiber UF membrane. J Membr Sci 288:123–131

    Article  CAS  Google Scholar 

  16. Yuan HK, Xu ZL, Shi JH, Ma XH (2008) Perfluorosulfonic acid-tetraethoxysilane/polyacrylonitrile (PFSA-TEOS/PAN) hollow fiber composite membranes prepared for pervaporation dehydration of ethyl acetate-water solutions. J Appl Polym Sci 109:4025–4035

    Article  CAS  Google Scholar 

  17. Yang JY, Li YL, Huang YQ, Liang JJ, Shen PK (2008) Dynamic conducting effect of WO3/PFSA membranes on the performance of proton exchange membrane fuel cells. J Power Sources 177:56–60

    Article  CAS  Google Scholar 

  18. Su LJ, Li L, Li H, Zhang YM, Yu W, Zhou CX (2009) PFSA membranes treated by supercritical carbon dioxide method for direct methanol fuel cell application. J Membr Sci 355:118–125

    Article  Google Scholar 

  19. Kusoglu A, Santare MH, Karlsson AM (2009) Mechanics-based model for non-affine swelling in perfluorosulfonic acid (PFSA) membranes. Polymer 50:2481–2491

    Article  CAS  Google Scholar 

  20. Kosoglu A, Tang YL, Lugo M, Karlsson AM, Santare MH, Cleghorn S, Johnson WB (2010) Constitutive response and mechanical properties of PFSA membranes in liquid water. J Power Sources 195:483–492

    Article  Google Scholar 

  21. Elvington MC, Colón-Mercado H, McCatty S, Stone SG, Hobbs DT (2010) Evaluation of proton-conducting membranes for use in a sulfur dioxide depolarized electrolyzer. J Power Sources 195:2823–2829

    Article  CAS  Google Scholar 

  22. Tang YL, Karlsson AM, Santare MH, Gilbert M, Cleghorn S, Johnson WB (2006) An experimental investigation of humidity, temperature effects on the mechanical properties of perfluorosulfonic acid membrane. Mater Sci Eng A 425:297–304

    Article  Google Scholar 

  23. Sportsman KS, Way JD, Chen WJ, Pez GP, Laciak DV (2002) The dehydration of nitric acid using pervaporation and a nafion perfluorosulfonate/perfluorocarboxylate bilayer membrane. J Membr Sci 203:155–166

    Article  CAS  Google Scholar 

  24. (2009) PFSA polymer is ideal for making fuel cells. Membr Technol 5:2–3

  25. Oshima A, Sato Y, Shiraki F, Mitani N, Fujii K, Oshima Y, Fujita H, Washio M (2011) Fabrication of PEFC membrane based on perfluorinated polymer using quantum beam induced grafting technique. Rad Phys Chem 80:164–168

    Article  CAS  Google Scholar 

  26. He DP, Mu SC, Pan M (2011) Perfluorosulfonic acid-functionalized Pt/carbon nanotube catalysts with enhanced stability and performance for use in proton exchange membrane fuel cells. Carbon 49:82–88

    Article  CAS  Google Scholar 

  27. Tsuchiya B, Konishi Y, Nagata S, Shikama T (2009) Interaction of water vapor with gamma-radiation-induced defects in proton conductive polymers. Solid State Ion 180:585–588

    Article  CAS  Google Scholar 

  28. Li JF, Xu ZL, Yang H, Yu LY, Liu M (2009) Effect of TiO2 nano-particles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732

    Article  CAS  Google Scholar 

  29. Yu LY, Shen HM, Xu ZL (2009) PVDF-TiO2 composite hollw fiber ultrafiltration membranes prepared by TiO2 sol-gel method and blending method. J Appl Polym Sci 113:1763–1772

    Article  CAS  Google Scholar 

  30. Yang YN, Zhang HX, Wang P, Zheng QZ, Li J (2007) The influence of nano-sized TiO2 fibers on the morphologies and properties of PES UF membrane. J Membr Sci 288:231–238

    Article  CAS  Google Scholar 

  31. Haruo I, Toshiyuki T, Naoki T, Shin’ichi M, Akihiko S, Hirofumi S (2007) Synthesis and characterization of Al2O3 and ZrO2-TiO2 nano-composite as a support for NOx storage-reduction catalyst. J Catal 251:315–320

    Article  Google Scholar 

  32. Gruger A, Régis A, Schmatko T, Colomban P (2001) Nanostructure of Nafion® membranes at different states of hydration. An IR and Raman study. Vib Spectrosc 26:215–225

    Article  CAS  Google Scholar 

  33. Yeom CK, Lee KH (1996) Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde. J Membr Sci 109:257–265

    Article  CAS  Google Scholar 

  34. Choi BG, Park H, Im HS, Kim YJ, Hong WH (2008) Inffluence of oxidation state of polyaniline on physicochemical and transport properties of Nafion®/polyaniline composite membrane for DMFC. J Membr Sci 324:102–110

    Article  CAS  Google Scholar 

  35. Zhu Y, Zhang L, Yao W, Cao L (2000) The chemical states and properties of doped TiO2 film photocatalyst prepared using the sol-gel method with TiCl4 as a precursor. Appl Surf Sci 158:32–37

    Article  CAS  Google Scholar 

  36. Chang F, Yu H, Roselin S, Yang H (2005) Production of hydrogen via partial oxidation of methanol over Au/TiO2 catalysts. Appl Catal A 290:138–147

    Article  CAS  Google Scholar 

  37. Peng T, Zhao D, Song H, Yan CJ (2005) Preparation of lanthana-doped Titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. Mol Catal A 238:119–126

    Article  CAS  Google Scholar 

  38. Liu G, Zhang X, Xu Y, Niu X, Zheng L, Ding X (2005) The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities. Chemosphere 59:1367–1371

    Article  CAS  Google Scholar 

  39. Mohajeri N, T-Raissi A, Bokerman G, Captain JE, Peterson BV, Whitten M, Trigwell S, Berger C, Brenner J (2010) TEM-XRD analysis of PdO particles on TiO2 support for chemochromic detection of hydrogen. Sens Actuat B 144:208–214

    Article  Google Scholar 

  40. Dubey SK, Yadav AD (1998) XRD, ESCA and C-V investigations of Al2O3 SiO2 composite thin films synthesized by high dose oxygen ion implantation. Nucl Instrum Methods Phys Res Sect B 143:493–498

    Article  CAS  Google Scholar 

  41. Samms SR, Wasmus S, Savinell RF (1996) Thermal stability of Nafion® in simulated fuel cell environments. J Electrochem Soc 143:1498–1504

    Article  CAS  Google Scholar 

  42. Su LJ, Pei SP, Li L, Li H, Zhang YM, Yu W, Zhou CX (2009) Preparation of polysiloxane/perfluorosulfonic acid nanocomposite membranes in supercritical carbon dioxide system for direct methanol fuel cell. Int J Hydrogen Energy 34:6892–6901

    Article  CAS  Google Scholar 

  43. Heitner-Wirguin C (1996) Recent advances in perfluorinated ionmomer membranes: structure, properties and applications. J Membr Sci 120:1–33

    Article  CAS  Google Scholar 

  44. Gebel G, Aldebert P, Pineri M (1987) Structure and related properties of solution-cast perfluorosulfonated ionomer films. Macromolecules 20:1425–1428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Key Technology R&D Programme of China (2006BAE02A01) and Chemistry and Chemical Technology Research Center Plan of Shanghai Huayi Group Company (A200-8608 and A200-80726) for giving financial supports in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Liang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, XH., Xu, ZL., Wu, F. et al. PFSA-TiO2(or Al2O3)-PVA/PVA/PAN difunctional hollow fiber composite membranes prepared by dip-coating method. Iran Polym J 21, 31–41 (2012). https://doi.org/10.1007/s13726-011-0007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-011-0007-9

Keywords

Navigation