Log in

Cellular physiology of olfactory learning in the honeybee brain

  • Review article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

The honeybee (Apis mellifera) is a model organism for the study of learning and memory formation and its underlying cellular mechanisms. The neuronal and molecular bases of olfactory associative learning have been intensively studied using the proboscis extension reflex. The neuronal pathway of the associative olfactory learning includes two main neuropils: the antennal lobes (AL) and the mushroom bodies (MB). Here, the excitatory olfactory and octopaminergic reward pathway converge together onto the AL neurons and MB intrinsic Kenyon cells (KCs). For learning-related neural plasticity to occur, the coincidence between the conditioned stimulus (CS) and the reward has to be reliably detected. Therefore, this review focusses on (1) the excitatory ionotropic nicotinic acetylcholine receptor (nAChR) and (2) the metabotropic octopamine receptor (OAR) which are located on the cell membrane in AL neurons as well as in KCs. For plasticity-dependent cellular mechanisms, we discuss the role of inhibition provided by GABAergic local interneurons in the ALs and feedback neurons in the MBs, as well as glutamatergic neurons in both neuropils. In our working model, we postulate two possible coincidence detector systems which may modulate further incoming olfactory stimuli: (1) an elevated intracellular Ca2+ concentration induced by the activation of the nAChR and OAR may result in the activation of Ca2+-dependent kinases. (2) Activation of a cAMP-dependent PKA may lead to phosphorylation of the nAChR and hence to learning-related intracellular changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Arnold, G., Masson, C., Budharugsa, S. (1985) Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone (Apis mellifera). Cell Tissue Res. 242(3), 593–605

    Article  Google Scholar 

  • Barbara, G., Zube, C., Rybak, J., Gauthier, M., Grünewald, B. (2005) Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J. Comp. Physiol. A 191(9), 823–836

    Article  Google Scholar 

  • Barbara, G., Grünewald, B., Paute, S., Gauthier, M., Raymond-Delpech, V. (2008) Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invertebr. Neurosci. 8(1), 19–29

    Article  CAS  Google Scholar 

  • Belzunces, L., Tchamitchian, S., Brunet, J.-L. (2012) Neural effects of insecticides in the honey bee. Apidologie. doi:10.1007/s13592-012-0134-0

  • Bicker, G., Kreissl, S. (1994) Calcium imaging reveals nicotinic acetylcholine receptors on cultured mushroom body neurons. J. Neurophysiol. 71(2), 808–810

    PubMed  CAS  Google Scholar 

  • Bicker, G., Schäfer, S., Kingan, T.G. (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res. 360(1–2), 394–397

    Article  PubMed  CAS  Google Scholar 

  • Bitterman, M.E., Menzel, R., Fietz, A., Schäfer, S. (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97(2), 107–119

    Article  PubMed  CAS  Google Scholar 

  • Blenau, W., Rademacher, E., Baumann, A. (2011) Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets? Apidologie. doi:10.1007/s13592-011-0108-7

  • Cano Lozano, V., Armengaud, C., Gauthier, M. (2001) Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J. Comp. Physiol. A 187(4), 249–254

    Article  Google Scholar 

  • Cleland, T. (1996) Inhibitory glutamate receptor channels. Molec. Neurobiol. 13, 97–136

    Google Scholar 

  • Decourtye, A., Devillers, J. (2010) Ecotoxicity of neonicotinoid insecticides to bees. Adv. Exp. Med. Biol. 683, 85–95

    Article  PubMed  CAS  Google Scholar 

  • Deglise, P., Grünewald, B., Gauthier, M. (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci. Lett. 321, 13–16

    Article  PubMed  CAS  Google Scholar 

  • Deisig, N., Giurfa, M., Sandoz, J.C. (2010) Antennal lobe processing increases separability of odor mixture representations in the honeybee. J. Neurophysiol. 103(4), 2185–2194

    Article  PubMed  Google Scholar 

  • Devaud, J.M., Blunk, A., Podufall, J., Giurfa, M., Grünewald, B. (2007) Using local anaesthetics to block neuronal activity and map specific learning tasks to the mushroom bodies of an insect brain. Eur. J. Neurosci. 26(11), 3193–3206

    Article  PubMed  Google Scholar 

  • Dupuis, J.P., Bazelot, M., Barbara, G.S., Paute, S., Gauthier, M., Raymond-Delpech, V. (2010) Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing. J. Neurophysiol. 103(1), 458–468

    Article  PubMed  CAS  Google Scholar 

  • Dupuis, J.P., Gauthier, M., Raymond-Delpech, V. (2011) Expression patterns of nicotinic subunits α2, α7, α8, and β1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. J. Neurophysiol. 106, 1604–1613

    Article  PubMed  CAS  Google Scholar 

  • Eisenhardt, D. (2006) Learning and memory formation in the honeybee (Apis mellifera) and its dependency on the cAMP-protein kinase A pathway. Anim. Biol. 56(2), 259–278

    Article  Google Scholar 

  • Eisenhardt, D., Friedrich, A., Stollhoff, N., Müller, U., Kress, H., Menzel, R. (2003) The AmCREB gene is an ortholog of the mammalian CREB/CREM family of transcription factors and encodes several splice variants in the honeybee brain. Insect Mol. Biol. 12, 373–382

    Article  PubMed  CAS  Google Scholar 

  • El Hassani, A., Giurfa, M., Gauthier, M., Armengaud, C. (2008) Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiol. Learn. Mem. 90, 589–595

    Article  PubMed  CAS  Google Scholar 

  • El Hassani, A., Dupuis, J., Gauthier, M., Armengaud, C. (2009) Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invertebr. Neurosci. 9, 91–100

    Article  CAS  Google Scholar 

  • Enan, E. (2005) Moelcular response of Drosophila melanogaster tyramine receptor cascade to plan essential oils. Insect Biochem. Mol. Biol. 35, 309–321

    Article  PubMed  CAS  Google Scholar 

  • Erber, J., Masuhr, T.H., Menzel, R. (1980) Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol. Entomol. 5, 343–358

    Article  Google Scholar 

  • Erber, J., Homberg, U., Gronenberg, W. (1987) Functional roles of the mushroom bodies in insects. In: Gupta, A. (ed.) Arthropod brain: its evolution, development, structure, and functions, pp. 485–511. Wiley, New York

    Google Scholar 

  • Evans, P. (1980) Biogenic amines in the insect nervous system. Adv. Insect Physiol. 15, 317–473

    Article  CAS  Google Scholar 

  • Evans, P., Maqueira, B. (2005) Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invertebr. Neurosci. 5(3–4), 111–118

    Article  CAS  Google Scholar 

  • Faber, T., Menzel, R. (2001) Visualizing mushroom body response to a conditioned odor in honeybees. Naturwissenschaften 88(11), 472–476

    Article  PubMed  CAS  Google Scholar 

  • Faber, T., Joerges, J., Menzel, R. (1999) Associative learning modifies neural representations of odors in the insect brain. Nat. Neurosci. 2(1), 74–78

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, P., Locatelli, F., Person-Rennell, N., Deleo, G., Smith, B. (2009) Associative conditioning tunes transient dynamics of early olfactory processing. J. Neurosci. 29, 10191–10202

    Article  PubMed  CAS  Google Scholar 

  • Fiala, A., Müller, U., Menzel, R. (1999) Reversible downregulation of protein kinase A during olfactory learning using antisense technique impairs long-term memory formation in the honeybee, Apis mellifera. J. Neurosci. 19(22), 10125–10134

    PubMed  CAS  Google Scholar 

  • Flanagan, D., Alison, R. (1989) An atlas and 3-D reconstruction of the antennal lobes in the worker honeybee. Int. J. Comp. Physiol. A 18(2), 145–159

    Google Scholar 

  • Friedrich, A., Thomas, U., Müller, U. (2004) Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory. J. Neurosci. 24(18), 4460–4468

    Article  PubMed  CAS  Google Scholar 

  • Galizia, C.G., Rössler, W. (2010) Parallel olfactory systems in insects: anatomy and function. Annu. Rev. Entomol. 55, 399–420

    Article  PubMed  CAS  Google Scholar 

  • Ganeshina, O., Menzel, R. (2001) GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscopic study. J. Comp. Neurol. 437(3), 335–349

    Article  PubMed  CAS  Google Scholar 

  • Gauthier, M. (2010) State of the art on insect nicotinic acetylcholine receptor function in learning and memory. Adv. Exp. Med. Biol. 683, 97–115

    Article  PubMed  CAS  Google Scholar 

  • Gauthier, M., Grünewald, B. (2012) Neurotransmitter systems in the honeybee brain: functions in learning and memory. In: Galizia, C.G., Eisenhardt, D., Giurfa, M. (eds.) Honeybee neurobiology and behavior, pp. 155–169. Springer, Dordrecht

    Chapter  Google Scholar 

  • Goldberg, F., Grünewald, B., Rosenboom, H., Menzel, R. (1999) Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J. Physiol. 514, 759–768

    Article  PubMed  CAS  Google Scholar 

  • Grohmann, L., Blenau, W., Erber, J., Ebert, R., Strünkenes, T., Baumann, A. (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J. Neurochem. 86, 725–735

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg, W. (1987) Anatomical and physiological properties of feedback neurons of mushroom bodies in the bee brain. Exp. Biol. 46, 115–125

    PubMed  CAS  Google Scholar 

  • Gronenberg, W. (2001) Subdivisions of hymenopteran mushroom body calyces by their afferent supply. J. Comp. Neurol. 435(4), 474–489

    Article  PubMed  CAS  Google Scholar 

  • Grünbaum, L., Müller, U. (1998) Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee. J. Neurosci. 18(11), 4384–4392

    PubMed  Google Scholar 

  • Grünewald, B. (1999a) Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera. J. Comp. Neurol. 404, 114–126

    Article  PubMed  Google Scholar 

  • Grünewald, B. (1999b) Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee, Apis mellifera. J. Comp. Physiol. A 185, 565–576

    Article  Google Scholar 

  • Grünewald, B. (2012) Cellular physiology of the honey bee brain. In: Galizia, C.G., Eisenhardt, D., Giurfa, M. (eds.) Honeybee neurobiology and behavior, pp. 185–198. Springer, Dordrecht

    Chapter  Google Scholar 

  • Grünewald, B., Wersing, A. (2008) An ionotropic GABA receptor in cultured mushroom body Kenyon cells of the honeybee and its modulation by intracellular calcium. J. Comp. Physiol. A 194, 329–340

    Article  Google Scholar 

  • Haehnel, M., Menzel, R. (2010) Sensory representation and learning-related plasticity in mushroom body extrinsic feedback neurons of the protocerebral tract. Front. Syst. Neurosci. 4, 1–13

    Article  Google Scholar 

  • Hammer, M. (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366, 59–63

    Article  Google Scholar 

  • Hammer, M. (1997) The neural basis of associative reward learning in honeybees. Trends Neurosci. 20(6), 245–252

    Article  PubMed  CAS  Google Scholar 

  • Hammer, M., Menzel, R. (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5(1–2), 146–156

    PubMed  CAS  Google Scholar 

  • Hauser, F., Cazzamali, G., Williamson, M., Blenau, W., Grimmelikhuijzen, C. (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog. Neurobiol. 80(1), 1–19

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg, M. (2003) Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4(4), 266–275

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt, H., Müller, U. (1995a) Octopamine mediates rapid stimulation of protein kinase A in the antennal lobe of honeybees. J. Neurobiol. 27(1), 44–50

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt, H., Müller, U. (1995b) PKA activity in the antennal lobe of honeybee is regulated by chemosensory stimulation in vivo. Brain Res. 679, 281–288

    Article  PubMed  CAS  Google Scholar 

  • Homberg, U. (1984) Processing of antennal information in extrinsic mushroom body neurons of the bee brain. J. Comp. Physiol. A 154, 825–836

    Article  Google Scholar 

  • Jones, A.K., Sattelle, D.B. (2006) The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera. Invertebr. Neurosci. 6(3), 123–132

    Article  CAS  Google Scholar 

  • Jones, A.K., Sattelle, D.B. (2010) Diversity of insect nicotinic acetylcholin receptor subunits. Adv. Exp. Med. Biol. 683, 25–43

    Article  PubMed  CAS  Google Scholar 

  • Kamikouchi, A., Takeuchi, H., Sawata, M., Ohashi, K., Natori, S., Kubo, T. (1998) Preferential expression of the gene for a putative inositol 1,4,5-trisphosphate receptor homologue in the mushroom bodies of the brain of the worker honeybee Apis mellifera L. Biochem. Biophys. Res. Commun. 242(1), 181–186

    Article  PubMed  CAS  Google Scholar 

  • Kenyon, F.C. (1896) The brain of the bee. J. Comp. Neurol. 6, 133–210

    Article  Google Scholar 

  • Kirschner, S., Kleineidam, C.J., Zube, C., Rybak, J., Grünewald, B., Rössler, W. (2006) Dual olfactory pathway in the honeybee, Apis mellifera. J. Comp. Neurol. 499, 933–952

    Article  PubMed  Google Scholar 

  • Kreissl, S., Bicker, G. (1989) Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J. Comp. Neurol. 286(1), 71–84

    Article  PubMed  CAS  Google Scholar 

  • Kreissl, S., Eichmüller, S., Bicker, G., Rapu, J., Eckert, M. (1994) Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. J. Comp. Neurol. 348(4), 583–595

    Article  PubMed  CAS  Google Scholar 

  • Krofczik, S., Menzel, R., Nawrot, M.P. (2009) Rapid odor processing in the honeybee antennal lobe network. Front. Comput. Neurosci. 2, 9

    Google Scholar 

  • Kucharski, R., Mitri, C., Grau, Y., Maleszka, R. (2007) Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): implications for memory formation. Invertebr. Neurosci. 7, 99–108

    Article  CAS  Google Scholar 

  • Locatelli, F., Bundrock, G., Müller, U. (2005) Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera. J. Neurosci. 25(50), 11614–11618

    Article  PubMed  CAS  Google Scholar 

  • Mauelshagen, J. (1993) Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. J. Neurophysiol. 69(2), 609–625

    PubMed  CAS  Google Scholar 

  • Menzel, R. (1999) Memory dynamics in the honeybee. J. Comp. Physiol. A 185, 323–340

    Article  Google Scholar 

  • Menzel, R., Manz, G. (2005) Neural plasticity of mushroom body-extrinsic neurons in the honeybee brain. J. Exp. Biol. 208, 4317–4332

    Article  PubMed  Google Scholar 

  • Menzel, R., Erber, J., Masuhr, T. (1974) Learning and memory in the honeybee. In: Browne, L. (ed.) Experimental analysis of insect behaviour, pp. 195–217. Springer, Berlin

    Chapter  Google Scholar 

  • Mercer, A.R., Mobbs, P.G., Davenport, A.P., Evans, P.D. (1983) Biogenic amines in the brain of the honeybee, Apis mellifera. Cell Tissue Res. 234(3), 655–677

    Article  PubMed  CAS  Google Scholar 

  • Mobbs, P. (1982) The brain of the honeybee Apis mellifera. Phil. Trans. R. Soc. Lond. B 298(309), 309–354

    Article  Google Scholar 

  • Müller, U. (1996) Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16(3), 541–549

    Article  PubMed  Google Scholar 

  • Müller, U. (1997) Neuronal cAMP-dependent protein kinase type II is concentrated in mushroom bodies of Drosophila melanogaster and the honeybee Apis mellifera. J. Neurobiol. 33(1), 33–44

    Article  PubMed  Google Scholar 

  • Müller, U. (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27, 159–168

    Article  PubMed  Google Scholar 

  • Müller, U. (2012) The molecular signalling processes underlying olfactory learning and memory formation in honeybees. Apidologie. doi:10.1007/s13592-011-0115-8

  • Müller, U., Abel, R., Brandt, R., Zöckler, M., Menzel, R. (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J. Comp. Physiol. A 188(5), 359–370

    Article  Google Scholar 

  • Müßig, L., Richlitzki, A., Rößler, R., Eisenhardt, D., Menzel, R., Leboulle, G. (2010) Acute disruption of NMDA receptor subunit NR1 in the honeybee brain selectively impairs memory formation. J. Neurosci. 30, 7817–7824

    Article  PubMed  Google Scholar 

  • Nauen, R., Ebbinghaus-Kintscher, U., Schmuck, R. (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag. Sci. 57(7), 577–586

    Article  PubMed  CAS  Google Scholar 

  • Okada, R., Rybak, J., Manz, G., Menzel, R. (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J. Neurosci. 27, 11736–11747

    Article  PubMed  CAS  Google Scholar 

  • Peele, P., Ditzen, M., Menzel, R., Galizia, C. (2006) Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons. J. Comp. Physiol. A 192(10), 1083–1103

    Article  CAS  Google Scholar 

  • Priestley, C., Williamson, E., Wafford, K., Sattelle, D. (2003) Thymol, a costituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors amd homo-oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharmacol. 140, 1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Rath, L., Galizia, G.C., Szyszka, P. (2011) Multiple memory traces after associative learning in the honey bee antennal lobe. Eur. J. Neurosci. 34(2), 352–360

    Article  PubMed  Google Scholar 

  • Rybak, J., Menzel, R. (1993) Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. J. Comp. Neurol. 334(3), 444–465

    Article  PubMed  CAS  Google Scholar 

  • Rybak, J., Menzel, R. (1998) Integrative properties of the PE1 neuron, a unique mushroom body output neuron. Learn. Mem. 5(1–2), 133–145

    PubMed  CAS  Google Scholar 

  • Sachse, S., Galizia, C.G. (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J. Neurophysiol. 87(2), 1106–1117

    PubMed  Google Scholar 

  • Scheiner, R., Baumann, A., Blenau, W. (2006) Aminergic control and modulation of honeybee behaviour. Curr. Neuropharmacol. 4, 259–276

    Article  PubMed  CAS  Google Scholar 

  • Sinakevitch, I., Niwa, M., Strausfeld, N.J. (2005) Octopamine-like immunoreactivity in the honey bee and cockroach: comparable organization in the brain and subesophageal ganglion. J. Comp. Neurol. 488(3), 233–254

    Article  PubMed  CAS  Google Scholar 

  • Sinakevitch, I., Mustard, J., Smith, B.H. (2011) Distribution of the octopamine receptor AmOA1 in the honey bee brain. PLoS One 6(1), 14536

    Article  Google Scholar 

  • Stopfer, M., Bhagavan, S., Smith, B.H., Laurent, G. (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390(6655), 70–74

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld, N.J. (2002) Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. J. Comp. Neurol. 450(1), 4–33

    Article  PubMed  Google Scholar 

  • Strube-Bloss, M.F., Nawrot, M.P., Menzel, R. (2011) Mushroom body output neurons encode odor-reward associations. J. Neurosci. 31(8), 3129–3140

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H. (1975) Antennal movements induced by odour and central projection of the antennal neurones in the honey-bee. J. Insect Physiol. 21(4), 831–847

    Article  Google Scholar 

  • Szyszka, P., Ditzen, M., Galkin, A., Galizia, C.G., Menzel, R. (2005) Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J. Neurophysiol. 94(5), 3303–3313

    Article  PubMed  Google Scholar 

  • Szyszka, P., Galkin, A., Menzel, R. (2008) Associative and non-associative plasticity in Kenyon cells of the honeybee mushroom body. Front. Syst. Neurosci. 2, 1–10

    Article  Google Scholar 

  • Thany, S.H. (2010) Neonicotinoid insecticides: historical evolution and resistance mechanisms. Adv. Exp. Med. Biol. 683, 75–83

    Article  PubMed  CAS  Google Scholar 

  • Thany, S.H., Lenaers, G., Crozatier, M., Armengaud, C., Gauthier, M. (2003) Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee. Insect Mol. Biol. 12, 255–262

    Article  PubMed  CAS  Google Scholar 

  • Thany, S.H., Crozatier, M., Raymond-Delpech, V., Gauthier, M., Lenaers, G. (2005) Apisα2, Apisα7-1 and Apisα7-2: three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain. Gene 344, 125–132

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Storm, D.R. (2003) Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system. Mol. Pharmacol. 63(3), 463–468

    Article  PubMed  Google Scholar 

  • Witthöft, W. (1967) Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z. Morphol. Tiere 61(1), 160–184

    Article  Google Scholar 

  • Wüstenberg, D.G., Grünewald, B. (2004) Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera. J. Comp. Physiol. A 190(10), 807–821

    Article  Google Scholar 

  • Wüstenberg, D., Gerber, B., Menzel, R. (1998) Short communication: long- but not medium-term retention of olfactory memories in honeybees is impaired by actinomycin D and anisomycin. Eur. J. Neurosci. 10(8), 2742–2745

    Article  PubMed  Google Scholar 

  • Yamagata, N., Schmucker, M., Syszka, P., Mizunami, M., Menzel, R. (2009) Differential odor processing in two olfactory pathways in the honeybee. Front. Syst. Neurosci. 3, 1–13

    Article  Google Scholar 

  • Zachepilo, T., Il’inykh, Y., Lopatina, N., Molotkov, D., Popov, A., Savvateeva-Popova, E., Vaido, A., Chesnokova, E. (2008) Comparative analysis of the locations of the NR1 and NR2 NMDA receptor subunits in honeybee (Apis mellifera) and fruit fly (Drosophila melanogaster, Canton-S wild-type) cerebral ganglia. Neurosci. Behav. Physiol. 38(4), 369–372

    Article  PubMed  CAS  Google Scholar 

  • Zannat, M.T., Locatelli, F., Rybak, J., Menzel, R., Leboulle, G. (2006) Identification and localisation of the NR1 sub-unit homologue of the NMDA glutamate receptor in the honeybee brain. Neurosci. Lett. 398(3), 274–279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Wolfgang Blenau for fruitful comments on the manuscript. The work was supported by the Stiftung Polytechnische Gesellschaft, Frankfurt am Main (scholarship to S.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Himmelreich.

Additional information

Manuscript editor: Yves Le Conte

Physiologie cellulaire de l’apprentissage olfactif dans le cerveau de l’abeille.

Apis mellifera / détection en coïncidence / récepteur acétylcholine / récepteur octopamine / lobe antennaire / corps pédonculé

Zellphysiologie des olfaktorischen Lernens der Honigbiene.

Apis mellifera / Koinzidenz-Detektion / Acetylcholinrezeptor / Oktopaminrezeptor / Antennallobus / Pilzkörper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himmelreich, S., Grünewald, B. Cellular physiology of olfactory learning in the honeybee brain. Apidologie 43, 308–321 (2012). https://doi.org/10.1007/s13592-012-0135-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-012-0135-z

Keywords

Navigation