Log in

Characterization of trichome morphology and aphid resistance in cultivated and wild species of potato

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Trichomes are specialized epidermal structures that protect plants from abiotic and biotic stresses. Cultivated potato (Solanum tuberosum) is known to have both glandular and non-glandular trichomes. However, the criteria for trichome type classification have not been studied in detail. In addition, there is a poor understanding of the types of trichomes that exist in wild potato species. Here, the morphology and density of trichomes were compared between a representative cultivated potato variety and 17 wild potato species using Cryo Scanning Electron Microscopy (CryoSEM). Based on trichome morphology, the cultivated variety and each of the wild species were seen to have two glandular and two non-glandular trichome types. We classified the eighteen potato species into four groups using trichome type and density criteria. Groups I and II represented species with a higher density of glandular or non-glandular trichomes, respectively, on both abaxial and adaxial leaf surfaces. Group III represented species with a higher density of non-glandular trichomes on abaxial leaf surfaces alone. Group IV represented species with an overall lower trichome density on both abaxial and adaxial leaf surfaces, but which was formed of both glandular and non-glandular types. Honey dew spots were quantified following infestation with the aphid Macrosiphum euphorbiae to test whether trichome composition is associated with resistance to aphid feeding. Fewer honey dew spots were observed in the Group I representative species S. berthaultii and S. hougasii compared to that in species from other groups. Furthermore, correlation coefficient analysis showed that honey dew spot number was negatively associated with glandular trichome density. These results imply that glandular trichomes play an important role in aphid resistance and thus can be used for develo** insect-resistant potato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bleeker PM, Diergaarde PJ, Ament K, Schutz S, Johne B, Dijkink J, Hiemstra H, de Gelder R, de Both MTJ, Sabelis MW, Haring MA, Schuurink RC (2011) Tomato-produced 7-epizingiberene and R-curcumene act as repellents to whiteflies. Phytochemistry 72:68–73

    Article  CAS  PubMed  Google Scholar 

  • Bleeker PM, Mirabella R, Diergaarde PJ, VanDoorn A, Tissier A, Kant MR, Prins M, de Vos M, Haring MA, Schuurink RC (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci USA 109:20124–20129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JJ, Douches DS, Cooper SG, Grafius EJ, Pett WL, Moyer DD (2005) Combining natural and engineered host plant resistance mechanisms in potato for Colorado potato beetle: Choice and no-choice field studies. J Am Soc Hortic Sci 130:857–864

    Google Scholar 

  • Firdaus S, ven Heusden A, Harpenas A, Supena EDJ, Visser RGF, Vosman B (2011) Identification of silverleaf whitefly resistance in pepper. Plant Breed 130:708–714

    Article  Google Scholar 

  • Gibson RW (1976) Trap** of the spider mite Tetranychus urticae by glandular hairs on the wild potato Solanum berthaultii. Potato Res 19:179–182

    Article  Google Scholar 

  • Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L, Guterman I, Harvey D, Isaac PG, Khan AM, Larson TR, Li Y, Pawson T, Penfield T, Rae AM, Rathbone DA, Reid S, Ross J, Smallwood MF, Segura V, Townsend T, Vyas D, Winzer T, Bowles D (2010) The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327 (5963):328–331

    Article  CAS  PubMed  Google Scholar 

  • Gregory P, Tingey WM, Ave DA, Bouthyette PY (1986) Potato glandular trichomes: a physicochemical defense-mechanism against insects. ACS Symp Ser 296:160–167

    Article  CAS  Google Scholar 

  • Happyana N, Agnolet S, Muntendam R, Van Dam A, Schneider B, Kayser O (2013) Analysis of cannabinoids in laser-micro dissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry 87:51–59

    Article  CAS  PubMed  Google Scholar 

  • Ju J, Bai H, Zheng YM, Zhao TY, Fang RC, Jiang L (2012) A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun 3:1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Campos ML, Zemelis-Durfee S, Al-Haddad JM, Jones AD, Telewski FW, Brandizzi F, Howe GA (2016) Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichomemediated defense and mechanical properties of stem tissue. J Exp Bot 67:5313–5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Liu GH, Shi F, Jones AD, Beaudry RM, Howe GA (2010a) The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol 154:262–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, McRoberts J, Shi F, Moreno JE, Jones AD, Howe GA (2014) The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. Plant Physiol 164:1161–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Shi F, Jones AD, Marks MD, Howe GA (2010b) Distortion of trichome morphology by the Hairless mutation of tomato affects leaf surface chemistry. J Exp Bot 61:1053–1064

    Article  CAS  PubMed  Google Scholar 

  • Khosla A, Paper JM, Boehler AP, Bradley AM, Neumann TR, Schrick K (2014) HD-Zip proteins GL2 and HDG11 have redundant functions in Arabidopsis trichomes, and GL2 activates a positive feedback loop via MYB23. Plant Cell 26:2184–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Han JH, Kim S, Lee HR, Shin JS, Kim JH, Cho J, Kim YH, Lee HJ, Kim BD, Choi D (2011) Trichome density of main stem is linked to PepMoV resistance in chili pepper. Theor Appl Genet 122:1051–1058

    Article  PubMed  Google Scholar 

  • Kim MJ, ** JJ, Zheng JS, Wong L, Chua NH, Jang IC (2015) Comparative transcriptomics unravel biochemical specialization of leaf tissues of stevia for diterpenoid Production. Plant Physiol 169:2462–2480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Seo E, Kim JH, Cheong H, Kang BC, Choi D (2011) Morphological classification of trichomes associated with possible biotic stress resistance in the genus capsicum. Plant Pathol J 28:107–113

    Article  CAS  Google Scholar 

  • Kowalski SP, Eannetta NT, Hirzel AT, Steffens JC (1992) Purification and characterization of polyphenol oxidase from glandular trichomes of Solanum berthaultii. Plant Physiol 100:677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon M, Cho H-M, Ahn Y-J (2006) Relationship between feeding damage by beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) and leaf trichome density of potato. J Asia Pac Entomol 9:361–367

    Article  Google Scholar 

  • Kwon M, Chang DC, Ahn YJ (2008) Infestation of potato cultivars by potato aphid, Macrosiphum euphorbiae Thomas, and its infestationrelated factors. Korean J Appl Entomol 47:193–199

    Article  Google Scholar 

  • Lee JJ, Yoo CM, So SS (1999) Defense mechanism of glandular trichome of Solanum tuberosum against Myzus persicae (Homoptera: Aphididae) I. Morphology of trichome and effects of its extract on development of the aphid. Korean J Entomol 29:189–193

    CAS  Google Scholar 

  • Luckwill LC (1943) The genus Lycopersicon: a historical, biological and taxonomic survey of the wild and cultivated tomatoes. UK: University of Aberdeen

    Google Scholar 

  • Lyshede OB (1980) The ultrastructure of the glandular trichomes of Solarium tuberosum. Ann Bot 46:519–526

    Article  Google Scholar 

  • Medeiros AH, Delalibera I, Tingey WM (2005) Aspects of potato leafhopper (Homoptera: Cicadellidae) biology on Solanum berthaultii and other potato genotypes. J Econ Entomol 98:1704–1709

    Article  PubMed  Google Scholar 

  • Medeiros AH, Tingey WM (2006) Glandular trichomes of Solanum berthaultii and its hybrids with Solanum tuberosum affect nymphal emergence, development, and survival of Empoasca fabae (Homoptera: Cicadellidae). J Econ Entomol 99:1483–1489

    Article  PubMed  Google Scholar 

  • Pattanaik S, Patra B, Singh SK, Yuan L (2014) An overview of the gene regulatory network controlling trichorne development in the model plant, Arabidopsis. Front Plant Sci 15:402

    Google Scholar 

  • Pelletier Y, Dutheil J (2006) Behavioural responses of the colorado potato beetle to trichomes and leaf surface chemicals of Solanum tarijense. Entomol Exp Appl 120:125–130

    Article  Google Scholar 

  • Pelletier Y, Smilowitz Z (1990) Effect of trichome-B exudate of Solanum berthaultii Hawkes on consumption by the colorado potato beetle, Leptinotarsa decemlineata (say). J Chem Ecol 16:1547–1555

    Article  CAS  PubMed  Google Scholar 

  • Pompon J, Quiring D, Giordanengo P, Pelletier Y (2010) Role of host-plant selection in resistance of wild Solanum species to Macrosiphum euphorbiae and Myzus persicae. Entomol Exp Appl 137:73–85

    Article  Google Scholar 

  • Radcliffe EB (1982) Insect pests of potato. Annu Rev Entomol 27:173–204

    Article  Google Scholar 

  • Radcliffe EB, Ragsdale DW (2002) Aphid-transmitted potato viruses: The importance of understanding vector biology. J Potato Res 79:353–386

    Article  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Moghe GD, Fan PX, Ghosh B, Ning J, Jones AD, Last RL (2015) Functionaly divergent alleles and duplicated loci encoding an acyltransferase contribute to acylsugar metabolite diversity in Solanum Trichomes. Plant Cell 27:1002–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Sangwan NS, Sangwan RS (2003) Developmental process of essential oil glandular trichome collapsing in menthol mint. Curr Sci India 84:544–550

    CAS  Google Scholar 

  • Shepherd RW, Bass WT, Houtz RL, Wagner GJ (2005) Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes. Plant Cell 17:1851–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spyropoulou EA, Haring MA, Schuurink RC (2014) RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. Bmc Genomics 15:402

    Article  PubMed  PubMed Central  Google Scholar 

  • Tai HH, Worrall K, Pelletier Y, De Koeyer D, Calhoun LA (2014) Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with colorado potato beetle resistance. J Agric Food Chem 62:9043–9055

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Tooker J, Peiffer M, Chung SH, Felton GW (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and Hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236:1053–1066

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Pan JB, An LZ, Gan YB, Feng HY (2012) The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. J Photochem Photobiol B 113:29–35

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Wu MJ, Zhao YQ, Zhang AD, Liu BH, Schiefelbein J, Gan YB (2014) Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in Arabidopsis. J Integr Plant Biol 56:1112–1117

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Li H, Zhang J, Luo Z, Gong P, Zhang C, Li J, Wang T, Zhang Y, Lu Ye, Ye Z (2011) A regulatory gene induces trichome formation and embryo lethality in tomato. Proc Natl Acad Sci USA 108:11836–11841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Ye Z (2013) Trichomes as models for studying plant cell differentiation. Cell Mol Life Sci 70:1937–1948

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **-Ho Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, KS., Kwon, M., Cho, JH. et al. Characterization of trichome morphology and aphid resistance in cultivated and wild species of potato. Hortic. Environ. Biotechnol. 58, 450–457 (2017). https://doi.org/10.1007/s13580-017-0078-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-017-0078-4

Additional key words

Navigation