Log in

Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes

  • Research Report
  • Protected Horticulture
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The addition of green light-emitting diodes (LEDs) to a combination of red and blue LEDs, which promote photosynthesis and growth in plants, is known to enhance plant growth in closed-type plant production systems. However, there is limited information on the effects of supplementary green light. This study aimed to determine the effect of red (R), green (G), and blue (B) LED ratios on the growth, photosynthetic, and antioxidant parameters in two lettuce (Lactuca sativa) cultivars, red leaf ‘Sunmang’ and green leaf ‘Grand Rapid TBR’. The seedlings were grown for 18 days and then cultivated in growth chambers equipped with LED lighting systems for 4 weeks. Combinations of six LED lighting sources (R:B = 9:1, 8:2, 7:3; R:G:B = 9:1:0, 8:1:1, 7:1:2) were manufactured to emit red (655 nm), blue (456 nm), or green (518 nm) lights under photosynthetic photon flux density of 173 ± 3 μmol·m-2·s-1. Red LEDs were found to improve growth characteristics such as fresh and dry weights of shoots and roots, and leaf area in combination with blue LEDs. The substitution of blue with green LEDs in the presence of a fixed proportion of red LEDs enhanced the growth of lettuce. In particular, the fresh weights of red leaf lettuce shoots under R8G1B1 were about 61% higher than those under R8B2. Furthermore, analysis of leaf morphology, transmittance, cell division rate, and leaf anatomy under treatments with green LEDs supported the enhanced growth of the two lettuce cultivars tested. Meanwhile, growth under blue LEDs led to the accumulation of antioxidant parameters in ‘Sunmang’. Thus, the results of this study suggest that the percentage of red, green, and blue LEDs is an important factor for the growth, development, and biosynthesis of secondary metabolites in plants and especially the supplemental irradiation of green LEDs based on the combination of red and blue LEDs can improve lettuce growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth, E.A. and K.M. Gillespie. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protoc. 2:875–877.

    Article  CAS  Google Scholar 

  • Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1–15.

    CAS  PubMed  Google Scholar 

  • Banas, A.K., C. Aggarwal, J. Labuz, O. Sztatelman, H. Gabrys. 2012. Blue light signaling in chloroplast movements. J. Exp. Bot. 63:1559–1574.

    Article  CAS  PubMed  Google Scholar 

  • Bian, Z.H., Q.C. Yang, and W.K. Liu. 2015. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J. Sci. Food Agric. 95:869–877.

    Article  CAS  PubMed  Google Scholar 

  • Calatayud, A. and E. Barreno. 2004. Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiol. Biochem. 42:549–555.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, R.F., M. Takaki, and R.A. Azevedo. 2011. Plant pigments: the many face of light perception. Acta Physiol. Plant. 33:241–248.

    Article  CAS  Google Scholar 

  • Ceulemans, R., L. Van Praet, and X.N. Jiang. 1995. Effects of CO2 enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (Populus). New Phytol. 131:99–107.

    Article  Google Scholar 

  • Chow, W.S., A. Melis, and J.M. Anderson. 1990. Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Pro. Natl. Acad. Sci. 87:7502–7506.

    Article  CAS  Google Scholar 

  • Downton, W.J.S., W.J.R. Grant, and S.P. Robinson. 1985. Photosynthetic and stomatal responses of spinach leaves to salt stress. Plant Physiol. 78:85–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Folta, K.M. 2004. Green light stimulates early stem elongation antagonizing light-mediated growth inhibition. Plant Physiol. 135: 1407–1416.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Folta, K.M. and S.A. Maruhnich. 2007. Green light: a signal to slow down or stop. J. Exp. Bot. 58:3099–3111.

    Article  CAS  PubMed  Google Scholar 

  • Folta, K.M. and K.S. Childers. 2008. Light as a growth regulator: controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience 43:1957–1964.

    Google Scholar 

  • Goins, G.D., N.C. Yorio, M.M. Sanwo, and C.S. Brown. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot. 48:1407–1413.

    Article  CAS  PubMed  Google Scholar 

  • Heo, J.W., D.H. Kang, H.S. Bang, S.G. Hong, C. Chun, and K.K. Kang. 2012. Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Kor. J. Hort. Sci. Technol. 30:6–12.

    CAS  Google Scholar 

  • Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 61:3107–3117.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hopkins, W.G. and N.P.A. Huner. 2004. Introduction to plant physiology. 3rd Ed. John Wiley and Sons, Hoboken, NJ, USA.

    Google Scholar 

  • Jiao, Y., O.S. Lau, and X.W. Deng. 2007. Light-regulated transcriptional networks in higher plants. Nature Rev. Genet. 8:217–230.

    Article  CAS  PubMed  Google Scholar 

  • Johkan, M., K. Shoji, F. Goto, S. Hahida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809–1814.

    Google Scholar 

  • Johkan, M., K. Shoji, F. Goto, S. Hahida, and T. Yoshihara. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exp. Bot. 75: 128–133.

    Article  CAS  Google Scholar 

  • Kim, H.-H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Green-light supplementation for enhanced lettuce growth under redand blue-light-emitting diodes. HortScience 39:1617–1622.

    PubMed  Google Scholar 

  • Klein, R.M. 1992. Effects of green light on biological systems. Biol. Rev. 67:199–284.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., Z. Xu, S. Guo, C. Tang, X. Liu, and X. Jao. 2014. Evaluation of leaf morphology, structure and biochemical substance of balloon flower (Platycodon grandiflorum (Jacq.) A. DC.) plantlets in vitro under different light spectra. Sci. Hortic. 174:112–118.

    Article  CAS  Google Scholar 

  • Llorach, R., A. Martínez-Sánchez, F.A. Tomás-Barberán, M.I. Gil, and F. Ferreres. 2008. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 108:1028–1038.

    Article  CAS  PubMed  Google Scholar 

  • Massa, G.D., H.-H. Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. HortScience 43: 1951–1956.

    Google Scholar 

  • Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, and K. Kurata. 2007. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci. Plant Nutr. 53:459–465.

    Article  CAS  Google Scholar 

  • Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, and K. Kurata. 2008. Effects of blue light deficiency on acclimation of light evergy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Plant Cell Physiol. 49:664–670.

    Article  CAS  PubMed  Google Scholar 

  • Miller, N.J. and C.A. Rice-Evans. 1996. Spectrophotometric determination of antioxidant activity. Redox Rpt. 2:161–17.

    CAS  Google Scholar 

  • Nishio, J.N. 2000. Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ. 23:539–548.

    Article  CAS  Google Scholar 

  • Ohashi-Kaneko, K., M. Takase, N. Kon, K. Fujiwara, and K. Kurata. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Control Biol. 45: 189–198.

    Article  CAS  Google Scholar 

  • Park, S.-Y., E.C. Yeung, and Peak, K.-Y., 2010. Endoreduplication in Phalaenopsis is affected by light quality from light-emitting diodes during somatic embryogenesis. Plant Biotechnol. Rep. 4: 303–309.

    Article  CAS  Google Scholar 

  • Saebo, A., T. Krekling, and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tissue Organ Cult. 41:177–185.

    Article  Google Scholar 

  • Samuoliene, G., R. Sirtautas, A. Brazaityte, J. Sakalauskaite, S. Sakalauskiene, and P. Duchovskis. 2011. The impact of red and blue light-emitting diode illumination on radish physiological indices. Central Eur. J. Biol. 6:821–828.

    Google Scholar 

  • Savvides, A., D. Fanourakis, and W. van Leperen. 2012. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. J. Exp. Bot. 63:1135–1143.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Šesták, Z. 1966. Limitations for finding a linear relationship between chlorophyll content and photosynthetic activity. Biol. Plant. 8: 336–346.

    Article  Google Scholar 

  • Son, K.-H., J.-H. Park, D. Kim, and M.-M. Oh. 2012. Leaf shape, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Kor. J. Hort. Sci. Technol. 30:664–672.

    CAS  Google Scholar 

  • Son, K.-H. and M.-M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting didoes. HortScience 48:988–995.

    Google Scholar 

  • Stutte, G.W., S. Edney, and T. Skerritt. 2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 44:79–82.

    Google Scholar 

  • Sun, J., J.N. Nishio, and T.C. Vogelmann. 1998. Green light drives CO2 fixation deep within leaves. Plant Cell Physiol. 39:1020–1026.

    Article  CAS  Google Scholar 

  • Talbott, L.D., G. Nikolova, A. Ortiz, I. Shmayevich, and E. Zeiger. 2002. Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. Am. J. Bot. 89:366–368.

    Article  PubMed  Google Scholar 

  • Terashima, I., T. Fujita, T. Inoue, W.S. Chow, and R. Oguchi. 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 50:684–697.

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Romos, J.M. and M. de la Paz Sánchez. 2003. The cell cycle and seed germination. Seed Sci. Res. 13:113–130.

    Article  Google Scholar 

  • Wang, H., M. Gu, J. Cui, K. Shi, T. Zhou, and J. Yu. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B: Biol. 96:30–37.

    Article  CAS  Google Scholar 

  • Wu, M.C., C.Y. Hou, C.M. Jiang, Y.T. Wang, C.Y. Wang, H.H. Chen, and H.M. Chang. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 101:1753–1758.

    Article  CAS  Google Scholar 

  • **aoYing, L., G. ShiRong, X. ZhiGang, J. XueLei, and T. Tezuka. 2011. Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light-emitting diodes. HortScience 46:217–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Min Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, KH., Oh, MM. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Hortic. Environ. Biotechnol. 56, 639–653 (2015). https://doi.org/10.1007/s13580-015-1064-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-1064-3

Additional key words

Navigation