Log in

Transcriptional analysis of Dehydrin1 genes responsive to dehydrating stress in grapevines

  • Research Report
  • Tissue Culture/Biotechnology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Dehydrins (DHNs) are proteins that are induced under dehydrating stress conditions such as drought, cold, and salinity. We investigated the expression of the DHN1 genes over time after drought treatment for 14 days and subsequent rehydration in the Korean native species, Vitis flexuosa, main cultivars ‘Campbell Early’ (Vitis spp.) and ‘Tamnara’ (Vitis spp.). Two highly homologous dehydrins, DHN1a and DHN1b, were isolated from ‘Campbell Early’ and ‘Tamnara’ grapevines, but only DHN1a cDNA was cloned from V. flexuosa leaves. Amino acid sequences of DHN1 deduced from five cDNAs of DHN1a/b from three grapevines were of the YSK2-type having the Y-, S-, and K-domain. Analysis of expression using quantitative real-time polymerase chain reaction and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that expression of the DHN1a and DHN1b genes was induced earlier in V. flexuosa under drought stress conditions than in ‘Campbell Early’ and ‘Tamnara’. During drought stress, a large amount of DHN1a and DHN1b was continuously expressed. V. flexuosa could be a resource in stress-tolerant grape breeding for enhancing drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allagulova, Ch.R., F.R. Gimalov, F.M. Shakirova, and V.A. Vakhitov. 2003. The plant dehydrins: Structure and putative functions. Biochemstry 68:945–951.

    CAS  Google Scholar 

  • Alsheikh, M.K., J. Svensson, and S.K. Randall. 2005. Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ. 28:1114–1122.

    Article  CAS  Google Scholar 

  • Bies-Etheve, N., P. Gaubier-Comella, A. Debures, E. Lasserre, E. Jobet, M. Raynal, R. Cooke, and M. Delseny. 2008. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol. Biol. 67:107–124.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S., J. Puryear, and J. Cairmey. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. 11: 113–116.

    Article  CAS  Google Scholar 

  • Choi, Y.J., H.K. Yun, K.S. Park, J.H. Noh, S.T. Jeong, H.J. Lee, and H.I. Jang. 2008. Screening gene expressed by Rhizobium vitis inoculation and salicylic acid treatment in grapevines using gene fishing. J. Japan Soc. Hort. Sci. 77:137–142.

    Article  CAS  Google Scholar 

  • Close, T.J. 1996. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97:795–903.

    Article  CAS  Google Scholar 

  • Close, T.J. 1997. Dehydrins: A commonalty in the response of plants to dehydration and low temperature. Physiol. Plant. 100: 291–296.

    Article  CAS  Google Scholar 

  • Cramer, G.R., A. Ergul, J. Grimplet, R.L. Tillett, E.A.R. Tattersall, M.C. Bohlman, D. Vincent, J. Sonderegger, J. Evans, C. Osborne, D. Quilici, K.A. Schlauch, D.A. Schooley, and J.C. Cushman. 2007. Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Funct. Integr. Genomics 7: 111–134.

    Article  PubMed  CAS  Google Scholar 

  • Danyluk, J., A. Perron, M. Houde, A. Limin, B. Flower., B. Nicole, and S. Fathey. 1998. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell. 10:623–638.

    PubMed  CAS  Google Scholar 

  • Gouy, M., S. Guindon, and O. Gascuel. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27:221–224.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, S. and S.P. Graether. 2011. Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci. 20: 42–50.

    Article  PubMed  CAS  Google Scholar 

  • Islam, M.S. and M.H. Wang. 2010. Expression patterns of an abiotic stress-inducible dehydrin gene, LeDhnT14, in tomato. Hort. Environ. Biotechnol. 51:556–561.

    CAS  Google Scholar 

  • Jaillon, O., J.M. Aury, B. Noel, A. Policriti, C. Clepet, A. Casagrande, N. Choisne, S. Aubourg, N. Vitulo, C. Jubin, A. Vezzi, F. Legeai, P. Hugueney, C. Dasilva, D. Horner, E. Mica, D. Jublot, J. Poulain, C. Bruyère, A. Billault, B. Segurens, M. Gouyvenoux, E. Ugarte, F. Cattonaro, V. Anthouard, V. Vico, C. Del Fabbro, M. Alaux, G. Di Gaspero, V. Dumas, N. Felice, S. Paillard, I. Juman, M. Moroldo, S. Scalabrin, A. Canaguier, I. Le Clainche, G. Malacrida, E. Durand, G. Pesole, V. Laucou, P. Chatelet, D. Merdinoglu, M. Delledonne, M. Pezzotti, A. Lecharny, C. Scarpelli, F. Artiguenave, M.E. Pè, G. Valle, M. Morgante, M. Caboche, A.F. Adam-Blondon, J. Weissenbach, F. Quètier, and P. Wincker. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, A., A. Goday, M. Figueras, A. Jessop, and M. Pages. 1998. Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J. 13:691–697.

    Article  PubMed  CAS  Google Scholar 

  • Koag, M.C., R.D. Fenton, S. Wilkens, and J.C. Timothy. 2003. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol. 131:309–316.

    CAS  Google Scholar 

  • Lovisolo, C., I. Perrone, W. Hartung, and A. Schubert. 2008. An abscisic acid-related reduces transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. New Phytol. 180: 642–651.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C.C., C.M. Li, B.G. Liu, S.J. Ge, X.M. Dong, W. Li, H.Y. Zhu, B.C. Wang, and C.P. Yang. 2012. Genome-wide identification and characterization of a dehydrin gene family in popular (Populus trichocarpa). Plant Mol. Biol. Rep. 30:848–859.

    Article  CAS  Google Scholar 

  • McCutchan, J. and K.A. Shackel. 1992. Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). J. Am. Soc. Hort. Sci. 117:607–611.

    Google Scholar 

  • Pollefeys, P. and J. Bousquet. 2003. Molecular genetic diversity of the French-American grapevine hybrids cultivated in North America. Genome 46:1037–1048.

    Article  PubMed  CAS  Google Scholar 

  • Puhakainen, T., M.W. Hess, M. Pirjo, J. Svensson, P. Heino, and E.T. Palva. 2004. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54: 743–753.

    Article  PubMed  CAS  Google Scholar 

  • Qian, G., Y. Liu, D. Ao, F. Yang, and M. Yu. 2008. Differential expression of dehydrin genes in hull-less barley (Hordeum vulgare ssp. vulgare) depending on duration of dehydration stress. Can. J. Plant Sci. 88:899–906.

    Article  CAS  Google Scholar 

  • Riera, M., M. Figueras, C. Lopez, A. Goday, and M. Pages. 2004. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc. Natl. Acad. Sci. USA. 101:9879–9884.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, K. and K. Yamaguchi-Shinozaki. 2007. Gene networks involved in drought stress response and tolerance. J. Exp. Botany. 58:221–227.

    Article  CAS  Google Scholar 

  • Shinozaki, K., K. Yamaguchi-Shinozaki, and M. Seki. 2003. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6:410–417.

    Article  PubMed  CAS  Google Scholar 

  • Silvamani, E., A. Bahieldin, J.M. Wraith, T. Al-Niemi, W.E. Dyer, H.H.D. Ho, and R. Qu. 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 155:1–9.

    Article  Google Scholar 

  • Suprunova, T., T. Krugman, T. Fahima, G. Chen, I. Shams, A. Korol, and E. Nevo. 2004. Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ. 27:1297–1308.

    Article  CAS  Google Scholar 

  • Tommasini, L., J.T. Svensson, E.M. Rodriguez, A. Wahid, M. Malatrasi, K. Kato, S. Wanamaker, J. Resnik, and T.J. Close. 2008. Dehydrin gene expression provides an indicator of low temperature and drought stress: Transcriptome-based analysis of barley (Hordeum vulgare L.). Funct. Integr. Genomics 8:387–405.

    Article  PubMed  CAS  Google Scholar 

  • Velasco, R., A. Zharkikh, M. Troggio, D.A. Cartwright, A. Cestaro, D. Pruss, M. Pindo, L.M. FitzGerald, S. Vezzulli, J. Reid, G. Malacarne, D. Iliev, G. Coppola, B. Wardell, D. Micheletti, T. Macalma, M. Facci, J.T. Mitchell, M. Perazzolli, G. Eldredge, P. Gatto, R. Oyzerski, M. Moretto, N. Gutin, M. Stefanini, Y. Chen, C. Segala, C. Davenport, L. Demattè, A. Mraz, J. Battilana, K. Stormo, F. Costa, Q. Tao, A. Si-Ammour, T. Harkins, A. Lackey, C. Perbost, B. Taillon, A. Stella, V. Solovyev, J.A. Fawcett, L. Sterck, K. Vandepoele, S.M. Grando, S. Toppo, C. Moser, J. Lanchbury, R. Bogden, M. Skolnick, V. Sgaramella, S.K. Bhatnagar, P. Fontana, A. Gutin, Y. Van de Peer, F. Salamini, and R. Viola. 2007. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One. 2:e1326.

    Article  PubMed  Google Scholar 

  • Wang, X., H. Zhu, G. **, H. Liu, W. Wu, and J. Zhu. 2007. Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci. 172:414–420.

    Article  CAS  Google Scholar 

  • **ao, H. and A. Nassuth. 2006. Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep. 25:968–977.

    Article  PubMed  CAS  Google Scholar 

  • Xu, D.P., X.L. Duan, B.Y. Wang, B.M. Hong, T.H.D. Ho, and R. Wu. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physol. 110:249–257.

    CAS  Google Scholar 

  • Yang, Y., M. He, Z. Zhu, S. Li, Y. Xu, C. Zhang, S.D. Singer, and Y. Wang. 2012. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol. 12:140.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn Young Hur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, YJ., Hur, Y.Y., Jung, SM. et al. Transcriptional analysis of Dehydrin1 genes responsive to dehydrating stress in grapevines. Hortic. Environ. Biotechnol. 54, 272–279 (2013). https://doi.org/10.1007/s13580-013-0094-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-013-0094-y

Additional key words

Navigation