Log in

Knockdown of UCHL3 inhibits esophageal squamous cell carcinoma progression by reducing CRY2 methylation

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

UCHL3 (Ubiquitin carboxyl-terminal hydrolase L3), a member of deubiquitinating enzymes, has been implicated in various cancers. However, the role of UCHL3 in esophageal squamous cell carcinoma (ESCC) remains unknown. In the current study, we aimed to investigate the role of UCHL3 in ESCC growth and migration, and whether UCHL3 could modulate CRY2 methylation through FOXM1. The expression of UCHL3 and CRY2 in ESCC tissues was assessed using qRT-PCR, western blotting and immunohistochemistry (IHC). Cell viability was determined by CCK-8 and colony formation assays. Hoechst 33342 and flow cytometry were used to detect cell apoptosis. Transwell assay was performed to investigate cell migration and invasion. In vivo animal model was used to assess cell tumorigenesis. Methylation-Specific PCR (MSP) was applied to detect CRY2 methylation in the promoter region. The results showed that UCHL3 expression was elevated in ESCC tissues and cells, while CRY2 expression was decreased. UCHL3 silencing inhibited cell viability, invasion, migration and induced cell apoptosis in vitro, repressed tumor growth in vivo, and increased CRY2 expression and decreased FOXM1 expression. In addition, UCHL3 knockdown decreased CRY2 methylation through downregulating FOXM1, leading to an increase in the expression of CRY2. Moreover, CRY2 silencing abolished UCHL3 deficiency-mediated inhibition in cell growth and migration. In summary, this study reveals that knockdown of UCHL3 inhibits ESCC growth and migration by reducing CRY2 methylation through downregulation of FOXM1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ansari MH, Irani S, Edalat H, Amin R, Mohammadi RA. Deregulation of miR-93 and miR-143 in human esophageal cancer. Tumour Biol. 2016;37:3097–103. https://doi.org/10.1007/s13277-015-3987-9.

    Article  CAS  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  3. Lin C, Zhang S, Wang Y, Nice E, Guo C, Zhang E, et al. Functional role of a novel long noncoding RNA TTN-AS1 in esophageal squamous cell carcinoma progression and metastasis. Clin Cancer Res. 2018;24:486–98. https://doi.org/10.1158/1078-0432.CCR-17-1851.

    Article  CAS  PubMed  Google Scholar 

  4. Yuequan J, Shifeng C, Bing Z. Prognostic factors and family history for survival of esophageal squamous cell carcinoma patients after surgery. Ann Thorac Surg. 2010;90:908–13. https://doi.org/10.1016/j.athoracsur.2010.05.060.

    Article  PubMed  Google Scholar 

  5. Cui Y, Chen H, ** R, Cui H, Zhao Y, Xu E, et al. Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res. 2020;30:902–13. https://doi.org/10.1038/s41422-020-0333-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hagi T, Kurokawa Y, Takahashi T, Saito T, Yamashita K, Tanaka K, et al. Molecular barcode sequencing for highly sensitive detection of circulating tumor DNA in patients with esophageal squamous cell carcinoma. Oncology. 2020;98:222–9. https://doi.org/10.1159/000504808.

    Article  CAS  PubMed  Google Scholar 

  7. Neutzner M, Neutzner A. Enzymes of ubiquitination and deubiquitination. Essays Biochem. 2012;52:37–50. https://doi.org/10.1042/bse0520037.

    Article  CAS  PubMed  Google Scholar 

  8. Fletcher AJ, Mallery DL, Watkinson RE, Dickson CF, James LC. Sequential ubiquitination and deubiquitination enzymes synchronize the dual sensor and effector functions of TRIM21. Proc Natl Acad Sci USA. 2015;112:10014–9. https://doi.org/10.1073/pnas.1507534112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park HB, Kim JW, Baek KH. Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21113904.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang Z, Bao S. Ubiquitination and deubiquitination of REST and its roles in cancers. FEBS Lett. 2012;586:1602–5. https://doi.org/10.1016/j.febslet.2012.04.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang M, Yu T, Hu L, Cheng Z, Li M. Ubiquitin carboxy-terminal HydrolaseL3 correlates with human sperm count, motility and fertilization. PLoS ONE. 2016;11:e0165198. https://doi.org/10.1371/journal.pone.0165198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suzuki M, Setsuie R, Wada K. Ubiquitin carboxyl-terminal hydrolase l3 promotes insulin signaling and adipogenesis. Endocrinology. 2009;150:5230–9. https://doi.org/10.1210/en.2009-0332.

    Article  CAS  PubMed  Google Scholar 

  13. Ouyang L, Yan B, Liu Y, Mao C, Wang M, Liu N, et al. The deubiquitylase UCHL3 maintains cancer stem-like properties by stabilizing the aryl hydrocarbon receptor. Signal Transduct Target Ther. 2020;5:78. https://doi.org/10.1038/s41392-020-0181-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li J, Zheng Y, Li X, Dong X, Chen W, Guan Z, et al. UCHL3 promotes proliferation of colorectal cancer cells by regulating SOX12 via AKT/mTOR signaling pathway. Am J Transl Res. 2020;12:6445–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang MH, Zhang HH, Du XH, Gao J, Li C, Shi HR, et al. UCHL3 promotes ovarian cancer progression by stabilizing TRAF2 to activate the NF-kappaB pathway. Oncogene. 2020;39:322–33. https://doi.org/10.1038/s41388-019-0987-z.

    Article  CAS  PubMed  Google Scholar 

  16. Song Z, Li J, Zhang L, Deng J, Fang Z, **ang X, et al. UCHL3 promotes pancreatic cancer progression and chemo-resistance through FOXM1 stabilization. Am J Cancer Res. 2019;9:1970–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell. 2015;161:84–92. https://doi.org/10.1016/j.cell.2015.03.015.

    Article  CAS  PubMed  Google Scholar 

  18. Gauger MA, Sancar A. Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res. 2005;65:6828–34. https://doi.org/10.1158/0008-5472.CAN-05-1119.

    Article  CAS  PubMed  Google Scholar 

  19. Mao Y, Fu A, Hoffman AE, Jacobs DI, ** M, Chen K, et al. The circadian gene CRY2 is associated with breast cancer aggressiveness possibly via epigenomic modifications. Tumour Biol. 2015;36:3533–9. https://doi.org/10.1007/s13277-014-2989-3.

    Article  CAS  PubMed  Google Scholar 

  20. Hoffman AE, Zheng T, Stevens RG, Ba Y, Zhang Y, Leaderer D, et al. Clock-cancer connection in non-Hodgkin’s lymphoma: a genetic association study and pathway analysis of the circadian gene cryptochrome 2. Cancer Res. 2009;69:3605–13. https://doi.org/10.1158/0008-5472.CAN-08-4572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu Y, Stevens RG, Hoffman AE, Fitzgerald LM, Kwon EM, Ostrander EA, et al. Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study. Cancer Res. 2009;69:9315–22. https://doi.org/10.1158/0008-5472.CAN-09-0648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu Y, Li Y, Zhou L, Yang G, Wang M, Hong Y. Cryptochrome 2 (CRY2) suppresses proliferation and migration and regulates clock gene network in osteosarcoma cells. Med Sci Monit. 2018;24:3856–62. https://doi.org/10.12659/MSM.908596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu L, Shen H, Wang Y. CRY2 is suppressed by FOXM1 mediated promoter hypermethylation in breast cancer. Biochem Biophys Res Commun. 2017;490:44–50. https://doi.org/10.1016/j.bbrc.2017.06.003.

    Article  CAS  PubMed  Google Scholar 

  24. Zeng K, Wang Z, Ohshima K, Liu Y, Zhang W, Wang L, et al. BRAF V600E mutation correlates with suppressive tumor immune microenvironment and reduced disease-free survival in Langerhans cell histiocytosis. Oncoimmunology. 2016;5:e1185582. https://doi.org/10.1080/2162402X.2016.1185582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian M, Zhu R, Ding F, Liu Z. Ubiquitin-specific peptidase 46 promotes tumor metastasis through stabilizing ENO1 in human esophageal squamous cell carcinoma. Exp Cell Res. 2020;395:112188. https://doi.org/10.1016/j.yexcr.2020.112188.

    Article  CAS  PubMed  Google Scholar 

  26. **g C, Duan Y, Zhou M, Yue K, Zhuo S, Li X, et al. Blockade of deubiquitinating enzyme PSMD14 overcomes chemoresistance in head and neck squamous cell carcinoma by antagonizing E2F1/Akt/SOX2-mediated stemness. Theranostics. 2021;11:2655–69. https://doi.org/10.7150/thno.48375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li G, ** X, Zheng J, Jiang N, Shi W. UCH-L3 promotes non-small cell lung cancer proliferation via accelerating cell cycle and inhibiting cell apoptosis. Biotechnol Appl Biochem. 2021;68:165–72. https://doi.org/10.1002/bab.1909.

    Article  CAS  PubMed  Google Scholar 

  28. Fan Y, Hu D, Li D, Ma C, Tang Y, Tao Q, et al. UCHL3 promotes aerobic glycolysis of pancreatic cancer through upregulating LDHA expression. Clin Transl Oncol. 2021. https://doi.org/10.1007/s12094-021-02565-1.

    Article  PubMed  Google Scholar 

  29. Fu L, Lee CC. The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer. 2003;3:350–61. https://doi.org/10.1038/nrc1072.

    Article  CAS  PubMed  Google Scholar 

  30. Rana S, Mahmood S. Circadian rhythm and its role in malignancy. J Circadian Rhythms. 2010;8:3. https://doi.org/10.1186/1740-3391-8-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chu G, Yoshida K, Narahara S, Uchikawa M, Kawamura M, Yamauchi N, et al. Alterations of circadian clockworks during differentiation and apoptosis of rat ovarian cells. Chronobiol Int. 2011;28:477–87. https://doi.org/10.3109/07420528.2011.589933.

    Article  CAS  PubMed  Google Scholar 

  32. Filipski E, King VM, Li X, Granda TG, Mormont MC, Liu X, et al. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst. 2002;94:690–7. https://doi.org/10.1093/jnci/94.9.690.

    Article  PubMed  Google Scholar 

  33. Hsu CM, Lin SF, Lu CT, Lin PM, Yang MY. Altered expression of circadian clock genes in head and neck squamous cell carcinoma. Tumour Biol. 2012;33:149–55. https://doi.org/10.1007/s13277-011-0258-2.

    Article  CAS  PubMed  Google Scholar 

  34. Quan M, Wang P, Cui J, Gao Y, **e K. The roles of FOXM1 in pancreatic stem cells and carcinogenesis. Mol Cancer. 2013;12:159. https://doi.org/10.1186/1476-4598-12-159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takata A, Takiguchi S, Okada K, Takahashi T, Kurokawa Y, Yamasaki M, et al. Clinicopathological and prognostic significance of FOXM1 expression in esophageal squamous cell carcinoma. Anticancer Res. 2014;34:2427–32.

    PubMed  Google Scholar 

  36. Zhou Y, Wang Q, Chu L, Dai W, Zhang X, Chen J, et al. FOXM1c promotes oesophageal cancer metastasis by transcriptionally regulating IRF1 expression. Cell Prolif. 2019;52:e12553. https://doi.org/10.1111/cpr.12553.

    Article  CAS  PubMed  Google Scholar 

  37. Song L, Wang X, Feng Z. Overexpression of FOXM1 as a target for malignant progression of esophageal squamous cell carcinoma. Oncol Lett. 2018;15:5910–4. https://doi.org/10.3892/ol.2018.8035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

JX designed the study, supervised the data collection, JY analyzed the data, interpreted the data, XZ prepared the manuscript for publication and reviewed the draft of the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to **yuan Yi.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the standards upheld by the Ethics Committee of Gansu Provincial Cancer Hospital and with those of the 1964 Helsinki Declaration and its later amendments for ethical research involving human subjects (Approval No.2015-11).

Informed consent

Written informed consent was obtained from a legally authorized representative(s) for anonymized patient information to be published in this article.

Research involved in human or animal rights

All animal experiments were approved by the Ethics Committee of Gansu Provincial Cancer Hospital for the use of animals and conducted in accordance with the National Institutes of Health Laboratory Animal Care and Use Guidelines (Apprival No.2018-59).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 2451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Yi, J. & Zhu, X. Knockdown of UCHL3 inhibits esophageal squamous cell carcinoma progression by reducing CRY2 methylation. Human Cell 35, 528–541 (2022). https://doi.org/10.1007/s13577-021-00660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00660-7

Keywords

Navigation