Log in

Genetic alterations in chondrosarcomas – keys to targeted therapies?

  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Chondrosarcomas are malignant tumors of chondrocytes and represent the second most common type of primary bone tumors. Within the context of normal chondrogenesis, this review summarizes results from recent research outlining the key molecular changes that occur during the development of this sarcoma type.

Results

Current data support the notion that a two-hit scenario, common to many tumors, also underlies chondrosarcoma formation. First, early-stage mutations alter the normal proliferation and differentiation of chondrocytes, thereby predisposing them to malignant transformation. These early-stage mutations, found in both benign cartilaginous lesions and chondrosarcomas, include alterations affecting the IHH/PTHrP and IDH1/IDH2 pathways. As they are not observed in malignant cells, mutations in the EXT1 and EXT2 genes are considered early-stage events providing an environment that alters IHH/PTHrP signaling, thereby inducing mutations in adjacent cells. Due to normal cell cycle control that remains active, a low rate of malignant transformation is seen in benign cartilaginous lesions with early-stage mutations. In contrast, late-stage mutations, seen in most malignant chondrosarcomas, appear to induce malignant transformation as they are not found in benign cartilaginous lesions. These late-stage mutations primarily involve cell cycle pathway regulators including p53 and pRB, two genes that are also known to be implicated in numerous other human tumor types.

Conclusions

Now the key genetic alterations involved in both early and late stages of chondrosarcoma development have been identified, focus should be shifted to the identification of druggable molecular targets for the design of novel chondrosarcoma-specific therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H.L. Evans, A.G. Ayala, M.M. Romsdahl, Prognostic factors in chondrosarcoma of bone: a clinicopathologic analysis with emphasis on histologic grading. Cancer 40, 818–31 (1977)

    Article  PubMed  CAS  Google Scholar 

  2. M.D. Murphey, E.A. Walker, A.J. Wilson, M.J. Kransdorf, H.T. Temple, F.H. Gannon, From the archives of the AFIP: imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics 23, 1245–78 (2003)

    Article  PubMed  Google Scholar 

  3. D.I. Rosenthal, A.L. Schiller, H.J. Mankin, Chondrosarcoma: correlation of radiological and histological grade. Radiology 150, 21–6 (1984)

    PubMed  CAS  Google Scholar 

  4. C.D.M. Fletcher, World Health Organization., International Agency for Research on Cancer. WHO classification of tumours of soft tissue and bone. 4th ed (IARC Press, Lyon, 2013)

    Google Scholar 

  5. H. Gelderblom, P.C. Hogendoorn, S.D. Dijkstra, C.S. van Rijswijk, A.D. Krol, A.H. Taminiau, J.V. Bovee, The clinical approach towards chondrosarcoma. Oncologist 13, 320–9 (2008)

    Article  PubMed  Google Scholar 

  6. Angelini A, Guerra G, Mavrogenis AF, Pala E, Picci P, Ruggieri P. Clinical outcome of central conventional chondrosarcoma. J Surg Oncol 2012

  7. J.G. van Oosterwijk, B. Herpers, D. Meijer, I.H. Briaire-de Bruijn, A.M. Cleton-Jansen, H. Gelderblom, B. van de Water, J.V. Bovee, Restoration of chemosensitivity for doxorubicin and cisplatin in chondrosarcoma in vitro: BCL-2 family members cause chemoresistance. Ann Oncol 23, 1617–26 (2012)

    Article  PubMed  Google Scholar 

  8. J.R. Stieber, J.P. Dormans, Manifestations of hereditary multiple exostoses. J Am Acad Orthop Surg 13, 110–20 (2005)

    PubMed  Google Scholar 

  9. A.I. Kyriazoglou, E. Dimitriadis, N. Arnogiannaki, P. Brandal, S. Heim, N. Pandis, Similar cytogenetic findings in two synchronous secondary peripheral chondrosarcomas in a patient with multiple osteochondromas. Cancer Genet 204, 677–81 (2011)

    Article  PubMed  CAS  Google Scholar 

  10. E.W. Brien, J.M. Mirra, R. Kerr, Benign and malignant cartilage tumors of bone and joint: their anatomic and theoretical basis with an emphasis on radiology, pathology and clinical biology. I. The intramedullary cartilage tumors. Skeletal Radiol 26, 325–53 (1997)

    Article  PubMed  CAS  Google Scholar 

  11. H.S. Schwartz, N.B. Zimmerman, M.A. Simon, R.R. Wroble, E.A. Millar, M. Bonfiglio, The malignant potential of enchondromatosis. J Bone Joint Surg Am 69, 269–74 (1987)

    PubMed  CAS  Google Scholar 

  12. S.H. Verdegaal, J.V. Bovee, T.C. Pansuriya, R.J. Grimer, H. Ozger, P.C. Jutte, M. San Julian, D.J. Biau, I.C. van der Geest, A. Leithner, A. Streitburger, F.M. Klenke, F.G. Gouin, D.A. Campanacci, P. Marec-Berard, P.C. Hogendoorn, R. Brand, A.H. Taminiau, Incidence, predictive factors, and prognosis of chondrosarcoma in patients with Ollier disease and Maffucci syndrome: an international multicenter study of 161 patients. Oncologist 16, 1771–9 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  13. S.I. Vornehm, J. Dudhia, K. Von der Mark, T. Aigner, Expression of collagen types IX and XI and other major cartilage matrix components by human fetal chondrocytes in vivo. Matrix Biol 15, 91–8 (1996)

    Article  PubMed  CAS  Google Scholar 

  14. H.M. Kronenberg, PTHrP and skeletal development. Ann N Y Acad Sci 1068, 1–13 (2006)

    Article  PubMed  CAS  Google Scholar 

  15. B. St-Jacques, M. Hammerschmidt, A.P. McMahon, Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13, 2072–86 (1999)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Tarpey PS, Behjati S, Cooke SL, Van Loo P, Wedge DC, Pillay N, Marshall J, O’Meara S, Davies H, Nik-Zainal S, Beare D, Butler A, Gamble J, Hardy C, Hinton J, Jia MM, Jayakumar A, Jones D, Latimer C, Maddison M, Martin S, McLaren S, Menzies A, Mudie L, Raine K, Teague JW, Tubio JM, Halai D, Tirabosco R, Amary F, Campbell PJ, Stratton MR, Flanagan AM, Futreal PA. Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma. Nat Genet 2013.

  17. T. Aigner, S. Dertinger, S.I. Vornehm, J. Dudhia, K. von der Mark, T. Kirchner, Phenotypic diversity of neoplastic chondrocytes and extracellular matrix gene expression in cartilaginous neoplasms. Am J Pathol 150, 2133–41 (1997)

    PubMed Central  PubMed  CAS  Google Scholar 

  18. T. Aigner, Towards a new understanding and classification of chondrogenic neoplasias of the skeleton–biochemistry and cell biology of chondrosarcoma and its variants. Virchows Arch 441, 219–30 (2002)

    Article  PubMed  CAS  Google Scholar 

  19. J. Ahn, H.J. Ludecke, S. Lindow, W.A. Horton, B. Lee, M.J. Wagner, B. Horsthemke, D.E. Wells, Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet 11, 137–43 (1995)

    Article  PubMed  CAS  Google Scholar 

  20. D. Stickens, G. Clines, D. Burbee, P. Ramos, S. Thomas, D. Hogue, J.T. Hecht, M. Lovett, G.A. Evans, The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nat Genet 14, 25–32 (1996)

    Article  PubMed  CAS  Google Scholar 

  21. C. McCormick, G. Duncan, K.T. Goutsos, F. Tufaro, The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci U S A 97, 668–73 (2000)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. C. Senay, T. Lind, K. Muguruma, Y. Tone, H. Kitagawa, K. Sugahara, K. Lidholt, U. Lindahl, M. Kusche-Gullberg, The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep 1, 282–6 (2000)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. T. Lind, F. Tufaro, C. McCormick, U. Lindahl, K. Lidholt, The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem 273, 26265–8 (1998)

    Article  PubMed  CAS  Google Scholar 

  24. C. McCormick, Y. Leduc, D. Martindale, K. Mattison, L.E. Esford, A.P. Dyer, F. Tufaro, The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet 19, 158–61 (1998)

    Article  PubMed  CAS  Google Scholar 

  25. A.D. Simmons, M.M. Musy, C.S. Lopes, L.Y. Hwang, Y.P. Yang, M. Lovett, A direct interaction between EXT proteins and glycosyltransferases is defective in hereditary multiple exostoses. Hum Mol Genet 8, 2155–64 (1999)

    Article  PubMed  CAS  Google Scholar 

  26. M.J. Hilton, L. Gutierrez, D.A. Martinez, D.E. Wells, EXT1 regulates chondrocyte proliferation and differentiation during endochondral bone development. Bone 36, 379–86 (2005)

    Article  PubMed  CAS  Google Scholar 

  27. J.T. Hecht, D. Hogue, Y. Wang, S.H. Blanton, M. Wagner, L.C. Strong, W. Raskind, M.F. Hansen, D. Wells, Hereditary multiple exostoses (EXT): mutational studies of familial EXT1 cases and EXT-associated malignancies. Am J Hum Genet 60, 80–6 (1997)

    PubMed Central  PubMed  CAS  Google Scholar 

  28. W. Wuyts, W. Van Hul, K. De Boulle, J. Hendrickx, E. Bakker, F. Vanhoenacker, F. Mollica, H.J. Ludecke, B.S. Sayli, U.E. Pazzaglia, G. Mortier, B. Hamel, E.U. Conrad, M. Matsushita, W.H. Raskind, P.J. Willems, Mutations in the EXT1 and EXT2 genes in hereditary multiple exostoses. Am J Hum Genet 62, 346–54 (1998)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. J.V. Bovee, A.M. Cleton-Jansen, W. Wuyts, G. Caethoven, A.H. Taminiau, E. Bakker, W. Van Hul, C.J. Cornelisse, P.C. Hogendoorn, EXT-mutation analysis and loss of heterozygosity in sporadic and hereditary osteochondromas and secondary chondrosarcomas. Am J Hum Genet 65, 689–98 (1999)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. J.V. Bovee, EXTra hit for mouse osteochondroma. Proc Natl Acad Sci U S A 107, 1813–4 (2010)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. X. Lin, G. Wei, Z. Shi, L. Dryer, J.D. Esko, D.E. Wells, M.M. Matzuk, Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 224, 299–311 (2000)

    Article  PubMed  CAS  Google Scholar 

  32. D. Stickens, B.M. Zak, N. Rougier, J.D. Esko, Z. Werb, Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development 132, 5055–68 (2005)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. K.B. Jones, V. Piombo, C. Searby, G. Kurriger, B. Yang, F. Grabellus, P.J. Roughley, J.A. Morcuende, J.A. Buckwalter, M.R. Capecchi, A. Vortkamp, V.C. Sheffield, A mouse model of osteochondromagenesis from clonal inactivation of Ext1 in chondrocytes. Proc Natl Acad Sci U S A 107, 2054–9 (2010)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. K. Matsumoto, F. Irie, S. Mackem, Y. Yamaguchi, A mouse model of chondrocyte-specific somatic mutation reveals a role for Ext1 loss of heterozygosity in multiple hereditary exostoses. Proc Natl Acad Sci U S A 107, 10932–7 (2010)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. C.M. Reijnders, C.J. Waaijer, A. Hamilton, E.P. Buddingh, S.P. Dijkstra, J. Ham, E. Bakker, K. Szuhai, M. Karperien, P.C. Hogendoorn, S.E. Stringer, J.V. Bovee, No haploinsufficiency but loss of heterozygosity for EXT in multiple osteochondromas. Am J Pathol 177, 1946–57 (2010)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. A. Clement, M. Wiweger, S. von der Hardt, M.A. Rusch, S.B. Selleck, C.B. Chien, H.H. Roehl, Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genet 4, e1000136 (2008)

    Article  PubMed Central  PubMed  Google Scholar 

  37. L. Hameetman, G. David, A. Yavas, S.J. White, A.H. Taminiau, A.M. Cleton-Jansen, P.C. Hogendoorn, J.V. Bovee, Decreased EXT expression and intracellular accumulation of heparan sulphate proteoglycan in osteochondromas and peripheral chondrosarcomas. J Pathol 211, 399–409 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. C.E. de Andrea, C.M. Reijnders, H.M. Kroon, D. de Jong, P.C. Hogendoorn, K. Szuhai, J.V. Bovee, Secondary peripheral chondrosarcoma evolving from osteochondroma as a result of outgrowth of cells with functional EXT. Oncogene 31, 1095–104 (2012)

    Article  PubMed  Google Scholar 

  39. C.E. de Andrea, M.I. Wiweger, J.V. Bovee, S. Romeo, P.C. Hogendoorn, Peripheral chondrosarcoma progression is associated with increased type X collagen and vascularisation. Virchows Arch 460, 95–102 (2012)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Y.M. Schrage, L. Hameetman, K. Szuhai, A.M. Cleton-Jansen, A.H. Taminiau, P.C. Hogendoorn, J.V. Bovee, Aberrant heparan sulfate proteoglycan localization, despite normal exostosin, in central chondrosarcoma. Am J Pathol 174, 979–88 (2009)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. M.F. Amary, S. Damato, D. Halai, M. Eskandarpour, F. Berisha, F. Bonar, S. McCarthy, V.R. Fantin, K.S. Straley, S. Lobo, W. Aston, C.L. Green, R.E. Gale, R. Tirabosco, A. Futreal, P. Campbell, N. Presneau, A.M. Flanagan, Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 43, 1262–5 (2011)

    Article  PubMed  CAS  Google Scholar 

  42. T.C. Pansuriya, R. van Eijk, P. d’Adamo, M.A. van Ruler, M.L. Kuijjer, J. Oosting, A.M. Cleton-Jansen, J.G. van Oosterwijk, S.L. Verbeke, D. Meijer, T. van Wezel, K.H. Nord, L. Sangiorgi, B. Toker, B. Liegl-Atzwanger, M. San-Julian, R. Sciot, N. Limaye, L.G. Kindblom, S. Daugaard, C. Godfraind, L.M. Boon, M. Vikkula, K.C. Kurek, K. Szuhai, P.J. French, J.V. Bovee, Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 43, 1256–61 (2011)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. L.E. Vissers, V. Fano, D. Martinelli, B. Campos-Xavier, D. Barbuti, T.J. Cho, A. Dursun, O.H. Kim, S.H. Lee, G. Timpani, G. Nishimura, S. Unger, J.O. Sass, J.A. Veltman, H.G. Brunner, L. Bonafe, C. Dionisi-Vici, A. Superti-Furga, Whole-exome sequencing detects somatic mutations of IDH1 in metaphyseal chondromatosis with D-2-hydroxyglutaric aciduria (MC-HGA). Am J Med Genet A 155A, 2609–16 (2011)

    Article  PubMed  Google Scholar 

  44. M.F. Amary, K. Bacsi, F. Maggiani, S. Damato, D. Halai, F. Berisha, R. Pollock, P. O’Donnell, A. Grigoriadis, T. Diss, M. Eskandarpour, N. Presneau, P.C. Hogendoorn, A. Futreal, R. Tirabosco, A.M. Flanagan, IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224, 334–43 (2011)

    Article  PubMed  CAS  Google Scholar 

  45. Arai M, Nobusawa S, Ikota H, Takemura S, Nakazato Y. Frequent IDH1/2 mutations in intracranial chondrosarcoma: a possible diagnostic clue for its differentiation from chordoma. Brain Tumor Pathol 2012.

  46. Meijer D, de Jong D, Pansuriya TC, van den Akker BE, Picci P, Szuhai K, Bovee JV. Genetic characterization of mesenchymal, clear cell, and dedifferentiated chondrosarcoma. Genes Chromosomes Cancer 2012.

  47. S. Damato, M. Alorjani, F. Bonar, S.W. McCarthy, S.R. Cannon, P. O’Donnell, R. Tirabosco, M.F. Amary, A.M. Flanagan, IDH1 mutations are not found in cartilaginous tumours other than central and periosteal chondrosarcomas and enchondromas. Histopathology 60, 363–5 (2012)

    Article  PubMed  Google Scholar 

  48. L. Dang, D.W. White, S. Gross, B.D. Bennett, M.A. Bittinger, E.M. Driggers, V.R. Fantin, H.G. Jang, S. **, M.C. Keenan, K.M. Marks, R.M. Prins, P.S. Ward, K.E. Yen, L.M. Liau, J.D. Rabinowitz, L.C. Cantley, C.B. Thompson, M.G. Vander Heiden, S.M. Su, Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465, 966 (2010)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. S. Gross, R.A. Cairns, M.D. Minden, E.M. Driggers, M.A. Bittinger, H.G. Jang, M. Sasaki, S. **, D.P. Schenkein, S.M. Su, L. Dang, V.R. Fantin, T.W. Mak, Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207, 339–44 (2010)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. M. Aghili, F. Zahedi, E. Rafiee, Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol 91, 233–6 (2009)

    Article  PubMed  Google Scholar 

  51. A. Latini, K. Scussiato, R.B. Rosa, S. Llesuy, A. Bello-Klein, C.S. Dutra-Filho, M. Wajner, D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats. Eur J Neurosci 17, 2017–22 (2003)

    Article  PubMed  Google Scholar 

  52. S. Zhao, Y. Lin, W. Xu, W. Jiang, Z. Zha, P. Wang, W. Yu, Z. Li, L. Gong, Y. Peng, J. Ding, Q. Lei, K.L. Guan, Y. **ong, Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324, 261–5 (2009)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. C. Chen, Q. Ma, X. Ma, Z. Liu, X. Liu, Association of elevated HIF-2alpha levels with low Beclin 1 expression and poor prognosis in patients with chondrosarcoma. Ann Surg Oncol 18, 2364–72 (2011)

    Article  PubMed  Google Scholar 

  54. S. Boeuf, J.V. Bovee, B. Lehner, P.C. Hogendoorn, W. Richter, Correlation of hypoxic signalling to histological grade and outcome in cartilage tumours. Histopathology 56, 641–51 (2010)

    Article  PubMed  Google Scholar 

  55. L.B. Rozeman, L. Hameetman, T. van Wezel, A.H. Taminiau, A.M. Cleton-Jansen, P.C. Hogendoorn, J.V. Bovee, cDNA expression profiling of chondrosarcomas: Ollier disease resembles solitary tumours and alteration in genes coding for components of energy metabolism occurs with increasing grade. J Pathol 207, 61–71 (2005)

    Article  PubMed  CAS  Google Scholar 

  56. M.E. Figueroa, O. Abdel-Wahab, C. Lu, P.S. Ward, J. Patel, A. Shih, Y. Li, N. Bhagwat, A. Vasanthakumar, H.F. Fernandez, M.S. Tallman, Z. Sun, K. Wolniak, J.K. Peeters, W. Liu, S.E. Choe, V.R. Fantin, E. Paietta, B. Lowenberg, J.D. Licht, L.A. Godley, R. Delwel, P.J. Valk, C.B. Thompson, R.L. Levine, A. Melnick, Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–67 (2010)

    Article  PubMed  CAS  Google Scholar 

  57. P. Guilhamon, M. Eskandarpour, D. Halai, G.A. Wilson, A. Feber, A.E. Teschendorff, V. Gomez, A. Hergovich, R. Tirabosco, M. Fernanda Amary, D. Baumhoer, G. Jundt, M.T. Ross, A.M. Flanagan, S. Beck, Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2. Nat Commun 4, 2166 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  58. B.C. van der Eerden, M. Karperien, E.F. Gevers, C.W. Lowik, J.M. Wit, Expression of Indian hedgehog, parathyroid hormone-related protein, and their receptors in the postnatal growth plate of the rat: evidence for a locally acting growth restraining feedback loop after birth. J Bone Miner Res 15, 1045–55 (2000)

    Article  PubMed  Google Scholar 

  59. J. Alvarez, P. Sohn, X. Zeng, T. Doetschman, D.J. Robbins, R. Serra, TGFbeta2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression. Development 129, 1913–24 (2002)

    PubMed  CAS  Google Scholar 

  60. L. Ho, A. Stojanovski, H. Whetstone, Q.X. Wei, E. Mau, J.S. Wunder, B. Alman, Gli2 and p53 cooperate to regulate IGFBP-3- mediated chondrocyte apoptosis in the progression from benign to malignant cartilage tumors. Cancer Cell 16, 126–36 (2009)

    Article  PubMed  CAS  Google Scholar 

  61. M. Amling, L. Neff, S. Tanaka, D. Inoue, K. Kuida, E. Weir, W.M. Philbrick, A.E. Broadus, R. Baron, Bcl-2 lies downstream of parathyroid hormone-related peptide in a signaling pathway that regulates chondrocyte maturation during skeletal development. J Cell Biol 136, 205–13 (1997)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. J. Guo, U.I. Chung, D. Yang, G. Karsenty, F.R. Bringhurst, H.M. Kronenberg, PTH/PTHrP receptor delays chondrocyte hypertrophy via both Runx2-dependent and -independent pathways. Dev Biol 292, 116–28 (2006)

    Article  PubMed  CAS  Google Scholar 

  63. F. Beier, Z. Ali, D. Mok, A.C. Taylor, T. Leask, C. Albanese, R.G. Pestell, P. LuValle, TGFbeta and PTHrP control chondrocyte proliferation by activating cyclin D1 expression. Mol Biol Cell 12, 3852–63 (2001)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. T.D. Tiet, S. Hopyan, P. Nadesan, N. Gokgoz, R. Poon, A.C. Lin, T. Yan, I.L. Andrulis, B.A. Alman, J.S. Wunder, Constitutive hedgehog signaling in chondrosarcoma up-regulates tumor cell proliferation. Am J Pathol 168, 321–30 (2006)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. G.Q. Tang, T.Q. Yan, W. Guo, T.T. Ren, C.L. Peng, H. Zhao, X.C. Lu, F.L. Zhao, X. Han, (−)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells. J Cancer Res Clin Oncol 136, 1179–85 (2010)

    Article  PubMed  CAS  Google Scholar 

  66. G.S. Oji, P. Gomez, G. Kurriger, J. Stevens, J.A. Morcuende, Indian hedgehog signaling pathway differences between swarm rat chondrosarcoma and native rat chondrocytes. Iowa Orthop J 27, 9–16 (2007)

    PubMed Central  PubMed  Google Scholar 

  67. Pateder DB, Gish MW, O’Keefe RJ, Hicks DG, Teot LA, Rosier RN. Parathyroid hormone-related Peptide expression in cartilaginous tumors. Clin Orthop Relat Res 2002: 198–204.

  68. L.B. Rozeman, L. Hameetman, A.M. Cleton-Jansen, A.H. Taminiau, P.C. Hogendoorn, J.V. Bovee, Absence of IHH and retention of PTHrP signalling in enchondromas and central chondrosarcomas. J Pathol 205, 476–82 (2005)

    Article  PubMed  CAS  Google Scholar 

  69. T. Kunisada, J.M. Moseley, J.L. Slavin, T.J. Martin, P.F. Choong, Co-expression of parathyroid hormone-related protein (PTHrP) and PTH/PTHrP receptor in cartilaginous tumours: a marker for malignancy? Pathology 34, 133–7 (2002)

    Article  PubMed  Google Scholar 

  70. J.V. Bovee, L.J. van den Broek, A.M. Cleton-Jansen, P.C. Hogendoorn, Up-regulation of PTHrP and Bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event in central chondrosarcoma. Lab Invest 80, 1925–34 (2000)

    Article  PubMed  CAS  Google Scholar 

  71. L. Hameetman, P. Kok, P.H. Eilers, A.M. Cleton-Jansen, P.C. Hogendoorn, J.V. Bovee, The use of Bcl-2 and PTHLH immunohistochemistry in the diagnosis of peripheral chondrosarcoma in a clinicopathological setting. Virchows Arch 446, 430–7 (2005)

    Article  PubMed  Google Scholar 

  72. S. Daugaard, L.H. Christensen, E. Hogdall, Markers aiding the diagnosis of chondroid tumors: an immunohistochemical study including osteonectin, bcl-2, cox-2, actin, calponin, D2-40 (podoplanin), mdm-2, CD117 (c-kit), and YKL-40. APMIS 117, 518–25 (2009)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. A. Couvineau, V. Wouters, G. Bertrand, C. Rouyer, B. Gerard, L.M. Boon, B. Grandchamp, M. Vikkula, C. Silve, PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum Mol Genet 17, 2766–75 (2008)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. S. Hopyan, N. Gokgoz, R. Poon, R.C. Gensure, C. Yu, W.G. Cole, R.S. Bell, H. Juppner, I.L. Andrulis, J.S. Wunder, B.A. Alman, A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat Genet 30, 306–10 (2002)

    Article  PubMed  Google Scholar 

  75. L.B. Rozeman, L. Sangiorgi, Briaire-de Bruijn IH, Mainil-Varlet P, Bertoni F, Cleton-Jansen AM, Hogendoorn PC, Bovee JV. Enchondromatosis (Ollier disease, Maffucci syndrome) is not caused by the PTHR1 mutation p.R150C. Hum Mutat 24, 466–73 (2004)

    Article  PubMed  CAS  Google Scholar 

  76. B. Coughlan, A. Feliz, T. Ishida, B. Czerniak, H.D. Dorfman, p53 expression and DNA ploidy of cartilage lesions. Hum Pathol 26, 620–4 (1995)

    Article  PubMed  CAS  Google Scholar 

  77. Y. Oshiro, V. Chaturvedi, D. Hayden, T. Nazeer, M. Johnson, D.A. Johnston, N.G. Ordonez, A.G. Ayala, B. Czerniak, Altered p53 is associated with aggressive behavior of chondrosarcoma: a long term follow-up study. Cancer 83, 2324–34 (1998)

    Article  PubMed  CAS  Google Scholar 

  78. D.C. Quinlan, A.G. Davidson, C.L. Summers, H.E. Warden, H.M. Doshi, Accumulation of p53 protein correlates with a poor prognosis in human lung cancer. Cancer Res 52, 4828–31 (1992)

    PubMed  CAS  Google Scholar 

  79. S. Blasenbreu, G.B. Baretton, C. Bender, C.J. Haas, J. Diebold, U. Lohrs, TP53 gene aberrations in chondromatous neoplasms: correlation with immunohistochemical p53 accumulation and MDM2 expression. Verh Dtsch Ges Pathol 82, 284–9 (1998)

    PubMed  CAS  Google Scholar 

  80. J. Asp, L. Sangiorgi, S.E. Inerot, A. Lindahl, L. Molendini, M.S. Benassi, P. Picci, Changes of the p16 gene but not the p53 gene in human chondrosarcoma tissues. Int J Cancer 85, 782–6 (2000)

    Article  PubMed  CAS  Google Scholar 

  81. J. Asp, S. Inerot, J.A. Block, A. Lindahl, Alterations in the regulatory pathway involving p16, pRb and cdk4 in human chondrosarcoma. J Orthop Res 19, 149–54 (2001)

    Article  PubMed  CAS  Google Scholar 

  82. J. Asp, C. Brantsing, K. Lovstedt, M.S. Benassi, S. Inerot, G. Gamberi, P. Picci, A. Lindahl, Evaluation of p16 and Id1 status and endogenous reference genes in human chondrosarcoma by real-time PCR. Int J Oncol 27, 1577–82 (2005)

    PubMed  CAS  Google Scholar 

  83. H.M. van Beerendonk, L.B. Rozeman, A.H. Taminiau, R. Sciot, J.V. Bovee, A.M. Cleton-Jansen, P.C. Hogendoorn, Molecular analysis of the INK4A/INK4A-ARF gene locus in conventional (central) chondrosarcomas and enchondromas: indication of an important gene for tumour progression. J Pathol 202, 359–66 (2004)

    Article  PubMed  Google Scholar 

  84. Y.M. Schrage, S. Lam, A.G. Jochemsen, A.M. Cleton-Jansen, A.H. Taminiau, P.C. Hogendoorn, J.V. Bovee, Central chondrosarcoma progression is associated with pRb pathway alterations: CDK4 down-regulation and p16 overexpression inhibit cell growth in vitro. J Cell Mol Med 13, 2843–52 (2009)

    Article  PubMed  CAS  Google Scholar 

  85. M. Ropke, C. Boltze, B. Meyer, H.W. Neumann, A. Roessner, R. Schneider-Stock, Rb-loss is associated with high malignancy in chondrosarcoma. Oncol Rep 15, 89–95 (2006)

    PubMed  CAS  Google Scholar 

  86. J. Asp, C. Brantsing, M.S. Benassi, S. Inerot, L. Sangiorgi, P. Picci, A. Lindahl, Changes in p14(ARF) do not play a primary role in human chondrosarcoma tissues. Int J Cancer 93, 703–5 (2001)

    Article  PubMed  CAS  Google Scholar 

  87. M.L. Larramendy, M. Tarkkanen, J. Valle, A.H. Kivioja, H. Ervasti, E. Karaharju, T. Salmivalli, I. Elomaa, S. Knuutila, Gains, losses, and amplifications of DNA sequences evaluated by comparative genomic hybridization in chondrosarcomas. Am J Pathol 150, 685–91 (1997)

    PubMed Central  PubMed  CAS  Google Scholar 

  88. M.L. Larramendy, N. Mandahl, F. Mertens, C. Blomqvist, A.H. Kivioja, E. Karaharju, J. Valle, T. Bohling, M. Tarkkanen, A. Rydholm, M. Akerman, H.C. Bauer, J.P. Anttila, I. Elomaa, S. Knuutila, Clinical significance of genetic imbalances revealed by comparative genomic hybridization in chondrosarcomas. Hum Pathol 30, 1247–53 (1999)

    Article  PubMed  CAS  Google Scholar 

  89. N. Mandahl, P. Gustafson, F. Mertens, M. Akerman, B. Baldetorp, D. Gisselsson, S. Knuutila, H.C. Bauer, O. Larsson, Cytogenetic aberrations and their prognostic impact in chondrosarcoma. Genes Chromosomes Cancer 33, 188–200 (2002)

    Article  PubMed  Google Scholar 

  90. T. Ozaki, D. Wai, K.L. Schafer, N. Lindner, W. Bocker, W. Winkelmann, B. Dockhorn-Dworniczak, C. Poremba, Comparative genomic hybridization in cartilaginous tumors. Anticancer Res 24, 1721–5 (2004)

    PubMed  CAS  Google Scholar 

  91. J.V. Bovee, A.M. Cleton-Jansen, N.J. Kuipers-Dijkshoorn, L.J. van den Broek, A.H. Taminiau, C.J. Cornelisse, P.C. Hogendoorn, Loss of heterozygosity and DNA ploidy point to a diverging genetic mechanism in the origin of peripheral and central chondrosarcoma. Genes Chromosomes Cancer 26, 237–46 (1999)

    Article  PubMed  CAS  Google Scholar 

  92. J.V. Bovee, M. van Royen, A.F. Bardoel, C. Rosenberg, C.J. Cornelisse, A.M. Cleton-Jansen, P.C. Hogendoorn, Near-haploidy and subsequent polyploidization characterize the progression of peripheral chondrosarcoma. Am J Pathol 157, 1587–95 (2000)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. A. Kreicbergs, L. Boquist, B. Borssen, S.E. Larsson, Prognostic factors in chondrosarcoma: a comparative study of cellular DNA content and clinicopathologic features. Cancer 50, 577–83 (1982)

    Article  PubMed  CAS  Google Scholar 

  94. Y.X. Zhang, J.G. van Oosterwijk, E. Sicinska, S. Moss, S.P. Remillard, T. van Wezel, C. Buhnemann, A.B. Hassan, G.D. Demetri, J.V. Bovee, A.J. Wagner, Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy. Clin Cancer Res 19, 3796–807 (2013)

    Article  PubMed  CAS  Google Scholar 

  95. D.J. Papachristou, G.I. Papachristou, O.A. Papaefthimiou, N.J. Agnantis, E.K. Basdra, A.G. Papavassiliou, The MAPK-AP-1/-Runx2 signalling axes are implicated in chondrosarcoma pathobiology either independently or via up-regulation of VEGF. Histopathology 47, 565–74 (2005)

    PubMed  CAS  Google Scholar 

  96. D. Halawani, R. Mondeh, L.A. Stanton, F. Beier, p38 MAP kinase signaling is necessary for rat chondrosarcoma cell proliferation. Oncogene 23, 3726–31 (2004)

    Article  PubMed  CAS  Google Scholar 

  97. Y.M. Schrage, I.H. Briaire-de Bruijn, N.F. de Miranda, J. van Oosterwijk, A.H. Taminiau, T. van Wezel, P.C. Hogendoorn, J.V. Bovee, Kinome profiling of chondrosarcoma reveals SRC-pathway activity and dasatinib as option for treatment. Cancer Res 69, 6216–22 (2009)

    Article  PubMed  CAS  Google Scholar 

  98. J.G. van Oosterwijk, M.A. van Ruler, I.H. Briaire-de Bruijn, B. Herpers, H. Gelderblom, B. van de Water, J.V. Bovee, Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells. Br J Cancer 109, 1214–22 (2013)

    Article  PubMed  Google Scholar 

  99. J.G. van Oosterwijk, D. Meijer, M.A. van Ruler, B.E. van den Akker, J. Oosting, T. Krenacs, P. Picci, A.M. Flanagan, B. Liegl-Atzwanger, A. Leithner, N. Athanasou, S. Daugaard, P.C. Hogendoorn, J.V. Bovee, Screening for potential targets for therapy in mesenchymal, clear cell, and dedifferentiated chondrosarcoma reveals Bcl-2 family members and TGFbeta as potential targets. Am J Pathol 182, 1347–56 (2013)

    Article  PubMed  Google Scholar 

  100. F.C. Kelleher, J.E. Cain, J.M. Healy, D.N. Watkins, D.M. Thomas, Prevailing importance of the hedgehog signaling pathway and the potential for treatment advancement in sarcoma. Pharmacol Ther 136, 153–68 (2012)

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre M. Samuel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samuel, A.M., Costa, J. & Lindskog, D.M. Genetic alterations in chondrosarcomas – keys to targeted therapies?. Cell Oncol. 37, 95–105 (2014). https://doi.org/10.1007/s13402-014-0166-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0166-8

Keywords

Navigation