Log in

Rapid estimation of the chemical composition of rice straw using FTIR spectroscopy: a chemometric investigation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The efficiency of lignocellulosic biomass conversion to fuels and chemicals is highly dependent on the structure and chemical composition of the biomass. So, rapid estimation of the chemical composition of biomass will be highly beneficial for biorefineries to fine-tune the feedstock and other processing parameters like enzymatic loading for a better yield of 2G ethanol. The conventional wet chemistry method for composition analysis is time-consuming, costly and laborious. This study aims to develop rapid, non-laborious, low-cost, and industrially applicable chemometric models like principal component regression (PCR) and partial least squares regression (PLSR) based on FTIR spectroscopy to determine the chemical composition of one such typical lignocellulosic biomass, viz., rice straw (RS). However, the results suggest that PCR and PLSR models constructed using the unprocessed FTIR spectra show poor performance in prediction. So, the spectra were processed, and an exploratory spectral analysis helped identify a specific region from 750 to 1800 cm−1 (SR-1) that accounts for significant variation between the RS samples. Moreover, 58 critical peaks in SR-1 were identified using a novel peak identification method proposed in this study. Further, results suggest that PLSR models developed using SR-1 of the processed spectra and the peaks as excellent prediction models (\({\mathrm{R}}_{\mathrm{cv}}^{2}\) > 95% and RPD > 4) and successful prediction models (90% < \({\mathrm{R}}_{\mathrm{cv}}^{2}\)< 95% and 3 < RPD < 4). Hence this study demonstrates that fine-tuned PLSR models based on processed FTIR spectra can be used as a tool for high-throughput screening of RS samples in biorefineries to improve the yield.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed for the current study were provided as supplementary materials.

References

  1. Sorek N, Yeats TH, Szemenyei H, Youngs H, Somerville CR (2014) The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. Bioscience 64:192–201. https://doi.org/10.1093/biosci/bit037

    Article  Google Scholar 

  2. Chen C, Deng X, Kong W, Qaseem MF, Zhao S, Li Y, Wu AM (2021) Rice Straws with different cell wall components differ on abilities of saccharification. Front Bioeng Biotechnol 8. https://doi.org/10.3389/fbioe.2020.624314

  3. Gao J, **n S, Wang L, Lei Y, Ji H, Liu S (2019) Effect of ionic liquid/inorganic salt/water pretreatment on the composition, structure and enzymatic hydrolysis of rice straw. Bioresour Technol Rep 5:355–358. https://doi.org/10.1016/j.biteb.2018.05.006

    Article  Google Scholar 

  4. Kim M, Kim BC, Nam K, Choi Y (2018) Effect of pretreatment solutions and conditions on decomposition and anaerobic digestion of lignocellulosic biomass in rice straw. Biochem Eng J 140:108–114. https://doi.org/10.1016/j.bej.2018.09.012

    Article  Google Scholar 

  5. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  Google Scholar 

  6. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58. https://doi.org/10.1016/j.biortech.2015.08.061

    Article  Google Scholar 

  7. McCann MC, Buckeridge MS, Carpita NC (2014) Plants and bioenergy. Plants BioEnergy 1–289. https://doi.org/10.1007/978-1-4614-9329-7

  8. Park JI, Liu L, Philip Ye X, Jeong MK, Jeong YS (2012) Improved prediction of biomass composition for switchgrass using reproducing kernel methods with wavelet compressed FT-NIR spectra. Expert Syst Appl 39:1555–1564. https://doi.org/10.1016/j.eswa.2011.05.012

    Article  Google Scholar 

  9. Huang J, Yu C (2019) Determination of cellulose, hemicellulose and lignin content using near-infrared spectroscopy in flax fiber. Textile Res J 89:4875–4883. https://doi.org/10.1177/0040517519843464

    Article  Google Scholar 

  10. Laurens LML, Wolfrum EJ (2011) Feasibility of spectroscopic characterization of algal lipids: chemometric correlation of NIR and FTIR Spectra with exogenous lipids in algal biomass. Bioenergy Res 4:22–35. https://doi.org/10.1007/s12155-010-9098-y

    Article  Google Scholar 

  11. Zhou C, Jiang W, Cheng Q, Via BK (2015) Multivariate calibration and model integrity for wood chemistry using fourier transform infrared spectroscopy. J Anal Methods Chem 2015:1–9. https://doi.org/10.1155/2015/429846

    Article  Google Scholar 

  12. Horikawa Y, Hirano S, Mihashi A, Kobayashi Y, Zhai S, Sugiyama J (2019) Prediction of lignin contents from infrared spectroscopy: chemical digestion and lignin/biomass ratios of Cryptomeria japonica. Appl Biochem Biotechnol 188:1066–1076. https://doi.org/10.1007/s12010-019-02965-8

    Article  Google Scholar 

  13. Bruun S, Jensen JW, Magid J, Lindedam J, Engelsen SB (2010) Prediction of the degradability and ash content of wheat straw from different cultivars using near infrared spectroscopy. Ind Crops Prod 31:321–326. https://doi.org/10.1016/j.indcrop.2009.11.011

    Article  Google Scholar 

  14. Lazzari E, Schena T, Marcelo MCA, Primaz CT, Silva AN, Ferrão MF, Bjerk T, Caramão EB (2018) Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis. Ind Crops Prod 111:856–864. https://doi.org/10.1016/j.indcrop.2017.11.005

    Article  Google Scholar 

  15. Xu F, Yu J (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl Energy 104:801–809. https://doi.org/10.1016/j.apenergy.2012.12.019

    Article  Google Scholar 

  16. Kiefer J, Lampe AI, Nicoli SF, Lucarini M, Durazzo A (2019) Identification of passion fruit oil adulteration by chemometric analysis of FTIR spectra. Molecules 24:1–13. https://doi.org/10.3390/molecules24183219

    Article  Google Scholar 

  17. Lancefield CS, Constant S, de Peinder P, Bruijnincx PCA (2019) Linkage abundance and molecular weight characteristics of technical lignins by attenuated total reflection-FTIR spectroscopy combined with multivariate analysis. Chemsuschem 12:1139–1146. https://doi.org/10.1002/cssc.201802809

    Article  Google Scholar 

  18. Toscano G, Maceratesi V, Leoni E, Stipa P, Laudadio E, Sabbatini S (2022) FTIR spectroscopy for determination of the raw materials used in wood pellet production. Fuel 313:123017. https://doi.org/10.1016/j.fuel.2021.123017

    Article  Google Scholar 

  19. Morais CLM, Lima KMG, Singh M, Martin FL (2020) Tutorial: multivariate classification for vibrational spectroscopy in biological samples. Nat Protoc 15:2143–2162. https://doi.org/10.1038/s41596-020-0322-8

    Article  Google Scholar 

  20. Mancini M, Rinnan A, Pizzi G (2018) Toscano, Prediction of gross calorific value and ash content of woodchip samples by means of FT-NIR spectroscopy. Fuel Process Technol 169:77–83. https://doi.org/10.1016/j.fuproc.2017.09.021

    Article  Google Scholar 

  21. Ai N, Jiang Y, Omar S, Wang J, **a L, Ren J (2022) Rapid measurement of cellulose, hemicellulose, and lignin content in Sargassum horneri by near-infrared spectroscopy and characteristic variables selection methods. Molecules 27:335. https://doi.org/10.3390/molecules27020335

    Article  Google Scholar 

  22. Zhang K, Zhou L, Brady M, Xu F, Yu J, Wang D (2017) Fast analysis of high heating value and elemental compositions of sorghum biomass using near-infrared spectroscopy. Energy 118:1353–1360. https://doi.org/10.1016/j.energy.2016.11.015

    Article  Google Scholar 

  23. ** X, Chen X, Shi C, Li M, Guan Y, Yu CY, Yamada T, Sacks EJ, Peng J (2017) Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis. Bioresour Technol 241:603–609. https://doi.org/10.1016/j.biortech.2017.05.047

    Article  Google Scholar 

  24. Zhang K, Xu Y, Johnson L, Yuan W, Pei Z, Wang D (2017) Development of near-infrared spectroscopy models for quantitative determination of cellulose and hemicellulose contents of big bluestem. Renewable Energy 109:101–109. https://doi.org/10.1016/j.renene.2017.03.020

    Article  Google Scholar 

  25. Liu J, ** S, Bao C, Sun Y, Li W (2021) Rapid determination of lignocellulose in corn stover based on near-infrared reflectance spectroscopy and chemometrics methods. Bioresour Technol 321:124449. https://doi.org/10.1016/j.biortech.2020.124449

    Article  Google Scholar 

  26. Uddin MN, Nayeem J, Islam MS, Jahan MS (2019) Rapid determination method of dissolving pulp properties by spectroscopic data and chemometrics. Biomass Conv Bioref 9:585–592. https://doi.org/10.1007/s13399-019-00383-8

    Article  Google Scholar 

  27. Singh SS, Lim L-T, Manickavasagan A (2020) Imaging and spectroscopic techniques for microstructural and compositional analysis of lignocellulosic materials: a review. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-01075-4

    Article  Google Scholar 

  28. Eilers PHC, Boelens HFM (2005) Baseline correction with asymmetric least squares smoothing. Leiden University Medical Centre Report

    Google Scholar 

  29. Eilers PHC (2003) A perfect smoother. Anal Chem 75:3631–3636. https://doi.org/10.1021/ac034173t

    Article  Google Scholar 

  30. Eilers PHC (2004) Parametric time war**. Anal Chem 76:404–411. https://doi.org/10.1021/ac034800e

    Article  Google Scholar 

  31. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, Velzen EJJ, Duijnhoven JPM, Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89. https://doi.org/10.1007/s11306-007-0099-6

    Article  Google Scholar 

  32. Niu W, Huang G, Liu X, Chen L, Han L (2014) Chemical composition and calorific value prediction of wheat straw at different maturity stages using near-infrared reflectance spectroscopy. Energy Fuels 28:7474–7482. https://doi.org/10.1021/ef501446r

    Article  Google Scholar 

  33. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedure (LAP)(NREL/TP-510-42618). Natl Renew Energy Lab 17

  34. Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard Normal variate transformation and de-trending of near-infrared diffuse reflectance Spectra. https://doi.org/10.1366/00037028942022

  35. Sim et al (2012) An automated approach for analysis of Fourier Transform Infrared (FTIR) spectra of edible oils. Talanta 88:537–543. https://doi.org/10.1016/j.talanta.2011.11.030

    Article  Google Scholar 

  36. Peters et al (2007) Development of an algorithm for peak detection in comprehensive two-dimensional chromatography. J Chromatogr A 1156:14–24. https://doi.org/10.1016/j.chroma.2006.10.066

    Article  Google Scholar 

  37. Savitzki A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1639–1643. https://doi.org/10.1021/ac60214a047

    Article  Google Scholar 

  38. Bro R, Smilde AK (2014) Principal component analysis. Anal Methods 6:2812–2831. https://doi.org/10.1039/c3ay41907j

    Article  Google Scholar 

  39. Jolliffe IT (1972) Discarding variables in a principal component analysis I.: Artificial Data. Appl Stat 21:160. https://doi.org/10.2307/2346488

    Article  MathSciNet  Google Scholar 

  40. Jolliffe IT (2002) Principal components analysis, 2nd edn. Springer, New York. https://springer.longhoe.net/book/10.1007/b98835

  41. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chimica Acta 10:1–17. https://doi.org/10.1016/0003-2670(86)80028-9

    Article  Google Scholar 

  42. Mehmood T, Ahmed B (2016) The diversity in the applications of partial least squares: an overview. J Chemom 30:4–17. https://doi.org/10.1002/cem.2762

    Article  Google Scholar 

  43. Helland IS, Sæbø S, Almøy T, Rimal R (2018) Model and estimators for partial least squares regression. J Chemom 32:1–13. https://doi.org/10.1002/cem.3044

    Article  Google Scholar 

  44. Heberge K (2008) Chapter 7 - Chemoinformatics-multivariate mathematical-statistical methods for data evaluation. Medical Applications of Mass Spectrometry 141–168. https://doi.org/10.1016/B978-044451980-1.50009-4.

  45. Berrar D (2018) Cross-validation, Encyclopedia of Bioinformatics and Computational Biology: ABC of. Bioinformatics 1–3:542–545. https://doi.org/10.1016/B978-0-12-809633-8.20349-X

    Article  Google Scholar 

  46. Niño AR, Ramírez CX, Hernández RC, Picón H, Guerrero JE, Mejía-Ospino E (2019) FTIR-ATR predictive model for determination of asphaltene solubility class index (ASCI) based on partial least-squares regression (PLS-R). Energy Fuels. https://doi.org/10.1021/acs.energyfuels.9b02829

    Article  Google Scholar 

  47. Defernez M, Kemsley EK (1997) The use and misuse of chemometrics for treating classification problems, TrAC –. Trends Anal Chem 16:216–221. https://doi.org/10.1016/S0165-9936(97)00015-0

    Article  Google Scholar 

  48. Kresta JV, Marlin TE, MacGregor JF (1994) Development of inferential process models using PLS. Comput Chem Eng 18:597–611. https://doi.org/10.1016/0098-1354(93)E0006-U

    Article  Google Scholar 

  49. Bhattacharyya P, Bhaduri D, Adak T, Munda S, Satapathy BS, Dash PK, Padhy SR, Pattanayak A, Routray S, Chakraborti M, Baig MJ, Mukherjee AK, Nayak AK, Pathak H (2020) Characterization of rice straw from major cultivars for best alternative industrial uses to cutoff the menace of straw burning. Ind Crops Prod 143:111919. https://doi.org/10.1016/j.indcrop.2019.111919

    Article  Google Scholar 

  50. Nazopatul PH (2018) Irmansyah, Irzaman, Extraction and characterization of silicon dioxide from rice straw. IOP Conf Ser: Earth Environ Sci 209:012013. https://doi.org/10.1088/1755-1315/209/1/012013

    Article  Google Scholar 

  51. Tian W, Li H, Zhou J, Guo Y (2017) Preparation, characterization and the adsorption characteristics of lignin/silica nanocomposites from cellulosic ethanol residue. RSC Adv 7:41176–41181. https://doi.org/10.1039/c7ra06322a

    Article  Google Scholar 

  52. Khaleghian H, Molaverdi M, Karimi K (2017) Silica Removal from rice straw to improve its hydrolysis and ethanol production. Ind Eng Chem Res 56:9793–9798. https://doi.org/10.1021/acs.iecr.7b02830

    Article  Google Scholar 

  53. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2015) Introduction to spectroscopy, 5th edn. Cengage Learning, Independence

  54. Scocrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, Chichester

  55. Tsegaye B, Balomajumder C, Roy P (2018) Biodelignification and hydrolysis of rice straw by novel bacteria isolated from wood feeding termite. 3 Biotech 8:0. https://doi.org/10.1007/s13205-018-1471-0

    Article  Google Scholar 

  56. Dai Y, Si M, Chen Y, Zhang N, Zhou M, Liao Q, Shi D, Liu Y (2015) Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Biores Technol 198:725–731. https://doi.org/10.1016/j.biortech.2015.09.091

    Article  Google Scholar 

  57. Liu C, Hu J, Zhang H, **ao R (2016) Thermal conversion of lignin to phenols: relevance between chemical structure and pyrolysis behaviors. Fuel 182:864–870. https://doi.org/10.1016/j.fuel.2016.05.104

    Article  Google Scholar 

  58. Edmunds CW, Hamilton C, Kim K, André N, Labbé N (2017) Rapid detection of ash and inorganics in bioenergy feedstocks Using Fourier Transform infrared spectroscopy coupled with partial least-squares regression. Energy Fuels 31:6080–6088. https://doi.org/10.1021/acs.energyfuels.7b00249

    Article  Google Scholar 

  59. Pretsch E, Bühlmann P, Badertscher M (2009) Structure determination of organic compounds: tables of spectral data, 5th edn. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-62439-5

  60. Fan G, Wang M, Liao C, Fang T, Li J, Zhou R (2013) Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid. Carbohyd Polym 94:71–76. https://doi.org/10.1016/j.carbpol.2013.01.073

    Article  Google Scholar 

  61. Momayez F, Karimi K, Karimi S, Horváth IS (2017) Efficient hydrolysis and ethanol production from rice straw by pretreatment with organic acids and effluent of biogas plant. RSC Adv 7:50537–50545. https://doi.org/10.1039/c7ra10063a

    Article  Google Scholar 

  62. da Costa Lopes AM, João KG, Rubik DF, Bogel-Łukasik E, Duarte LC, Andreaus J, Bogel-Łukasik R (2013) pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation. Bioresour Technol 142:198–208. https://doi.org/10.1016/j.biortech.2013.05.032

    Article  Google Scholar 

  63. Ogura T, Date Y, Kikuchi J (2013) Differences in cellulosic supramolecular structure of compositionally similar rice straw affect biomass metabolism by paddy soil Microbiota. PLoS ONE 8:e66919. https://doi.org/10.1371/journal.pone.0066919

    Article  Google Scholar 

  64. Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of develo** cotton fibers investigated by FTIR spectroscopy. Carbohyd Polym 100:9–16. https://doi.org/10.1016/j.carbpol.2013.01.074

    Article  Google Scholar 

  65. Win NN, Weinwurm F, Friedl A (2016) Investigation of organosolv and hot-compressed water pretreatments of rice straw. Biomass Conv Bioref 6:355–364. https://doi.org/10.1007/s13399-015-0188-0

    Article  Google Scholar 

  66. Sheng J, Ji D, Yu F, Cui L, Zeng Q, Ai N, Ji J (2014) Influence of chemical treatment on rice straw pyrolysis by TG-FTIR. IERI Procedia 8:30–34. https://doi.org/10.1016/j.ieri.2014.09.006

    Article  Google Scholar 

  67. Dong L, Cao G, Zhao L, Liu B, Ren N (2018) Alkali/urea pretreatment of rice straw at low temperature for enhanced biological hydrogen production. Biores Technol 267:71–76. https://doi.org/10.1016/j.biortech.2018.05.055

    Article  Google Scholar 

  68. Nanayakkara MPA, Pabasara WGA, Samarasekara AMPB, Amarasinghe DAS, Karunanayake L (2017) Synthesis and characterization of cellulose from locally available rice straw, 3rd International Moratuwa Engineering Research Conference. MERCon 2017:176–181. https://doi.org/10.1109/MERCon.2017.7980477

    Article  Google Scholar 

  69. Giang CH, Osatiashtiani A, dos Santos VC, Lee AF, Wilson DR, Waldron KW, Wilson K (2014) Valorisation of vietnamese rice straw waste: catalytic aqueous phase reforming of hydrolysate from steam explosion to platform chemicals. Catalysts 4:414–426. https://doi.org/10.3390/catal4040414

    Article  Google Scholar 

  70. Yakout SM (2015) Monitoring the changes of chemical properties of rice straw-derived biochars modified by different oxidizing agents and their adsorptive performance for organics. Bioremediat J 19:171–182. https://doi.org/10.1080/10889868.2015.1029115

    Article  Google Scholar 

  71. Madu JO, Agboola BO (2018) Bioethanol production from rice husk using different pretreatments and fermentation conditions. 3 Biotech 8:1–6. https://doi.org/10.1007/s13205-017-1033-x

    Article  Google Scholar 

  72. Salehi SMA, Karimi K, Behzad T, Poornejad N (2012) Efficient conversion of rice straw to bioethanol using sodium carbonate pretreatment. Energy Fuels 26:7354–7361. https://doi.org/10.1021/ef301476b

    Article  Google Scholar 

  73. Dehghani M, Karimi K, Sadeghi M (2015) Pretreatment of rice straw for the improvement of biogas production. Energy Fuels 29:3770–3775. https://doi.org/10.1021/acs.energyfuels.5b00718

    Article  Google Scholar 

  74. Nasri-Nasrabadi B, Behzad T, Bagheri R (2014) Extraction and characterization of rice straw cellulose nanofibers by an optimized chemomechanical method. J Appl Polym Sci 131:1–7. https://doi.org/10.1002/app.40063

    Article  Google Scholar 

  75. Li Y, Qi B, Feng J, Zhang Y, Wan Y (2017) Effect of hydrothermal carbonization reaction parameters on. Environ Prog Sustain Energy 33:808–814. https://doi.org/10.1002/ep.12703

    Article  Google Scholar 

  76. ** S (2007) Near-infrared analysis of the chemical composition of rice straw. Ind Crops Prod 26:207–211. https://doi.org/10.1016/j.indcrop.2007.03.004

    Article  Google Scholar 

Download references

Acknowledgements

SRP acknowledges and thank the Council of Scientific and Industrial Research (CSIR), New Delhi, India, and the University Grants Commission (UGC), New Delhi, India, for CSIR-UGC Junior Research Fellowship (2019 - 2021) and CSIR-UGC Senior Research Fellowship (2021 - 2023). Also, CSIR-NIIST, Thiruvananthapuram, for providing the research facility.

Funding

SM received financial support from CSIR, New Delhi, India. The authors received financial support from RKS of the Department of Science and Technology, Government of India, for the project DST/INT/AUS/GCP-5/13(G) and the Council of Scientific and Industrial Research, Government of India, for Project 33/2018/MD-FFT&FTC-ANB.

Author information

Authors and Affiliations

Authors

Contributions

Sreejith R P: conceptualization, methodology, software, formal analysis, data curation, investigation, visualization, writing - original draft, project administration.

Meena Sankar: methodology, formal analysis, investigation, writing - original draft.

Rajeev K Sukumaran: conceptualization, methodology, resources, funding, validation, writing - original draft.

Sivaraman Savithri: conceptualization, methodology, resources, funding, supervision, validation, writing - original draft.

Corresponding author

Correspondence to Sivaraman Savithri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 796 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R P, S., Sankar, M., Sukumaran, R.K. et al. Rapid estimation of the chemical composition of rice straw using FTIR spectroscopy: a chemometric investigation. Biomass Conv. Bioref. 14, 11829–11847 (2024). https://doi.org/10.1007/s13399-022-03508-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03508-8

Keywords

Navigation