Log in

Immobilization of a cold-adaptive recombinant Penicillium cyclopium lipase on modified palygorskite for biodiesel preparation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A Pichia pastoris recombinant cold-adaptive lipase (rePcLip) from Penicillium cyclopium was successfully immobilized on modified palygorskite to develop a robust biocatalytic system for biodiesel production from soybean oil. The optimum immobilization conditions were addition amount of 6 g rePcLip to 10 g modified palygorskite, pH 7.0, and binding time 5.0 h. Under these optimal conditions, it reached a transesterification activity of 445.2 U/g (palygorskite with well-immobilized rePcLip, PLG-rePcLip). For biodiesel preparation, the optimized reaction conditions were 20 g soybean oil dissolved in 12 mL t-butanol solvent, 3.7 mL methanol (molar ratio of methanol to oil was 4:1), 0.6 mL water, and 1.6 g PLG-rePcLip at 25 °C and a shaking speed of 200 rpm. The methanol was supplemented at a frequency of 4 times in 48 h (at 0, 7, 16, and 29 h) by adding quarters of methanol that kept 4:1 molar ratio of total methanol to oil. After a 48-h reaction, the transesterification ratio was 93.2%. After reusing immobilized rePcLip for 8 cycles, the residual activity and biodiesel yield were 71% and 65%, respectively. As a non-commercial cold-adaptive biocatalyst, rePcLip immobilized on palygorskite should be a promising alternative for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Glanemann N, Willner SN, Levermann A (2020) Paris climate agreement passes the cost-benefit test. Nat Commun 11:110. https://doi.org/10.1038/s41467-019-13961-1

    Article  Google Scholar 

  2. Liu X, Li K, Sun S (2021) Biodiesel production from non-edible high acid value phoenix seed oil using a cheap immobilized lipase. Biomass Convers Bior 2:1–12. https://doi.org/10.1007/s13399-021-01440-x

    Article  Google Scholar 

  3. Sangkharak K, Chookhun K, Numreung J, Prasertsan P (2020) Utilization of coconut meal, a waste product of milk processing, as a novel substrate for biodiesel and bioethanol production. Biomass Convers Bior 10:651–662. https://doi.org/10.1007/s13399-019-00456-8

    Article  Google Scholar 

  4. Lee JH, Lee JH, Kim DS, Yoo HY, Park C, Kim SW (2019) Biodiesel production by lipases co-immobilized on the functionalized activated carbon. Bioresour Technol Rep 7:100248. https://doi.org/10.1016/j.biteb.2019.100248

    Article  Google Scholar 

  5. Zaitsev SY, Savina AA, Zaitsev IS (2019) Biochemical aspects of lipase immobilization at polysaccharides for biotechnology. Adv Colloid Interfac 272:102016. https://doi.org/10.1016/j.cis.2019.102016

    Article  Google Scholar 

  6. Quayso E, Amoah J, Hama S, Kondo A, Ogino C (2020) Immobilized lipases for biodiesel production: current and future greening opportunities. Renew Sust Energ Rev 134:110355. https://doi.org/10.1016/j.rser.2020.110355

    Article  Google Scholar 

  7. Wang S, Xu Y, Yu XW (2021) A phenylalanine dynamic switch controls the interfacial activation of Rhizopus chinensis lipase. Int J Biol Macromol 173:1–12. https://doi.org/10.1016/j.ijbiomac.2021.01.086

    Article  Google Scholar 

  8. Tan ZB, Li JF, Li XT, Gu Y, Wu MC, Wu J, Wang JQ (2014) A unique mono- and diacylglycerol lipase from Penicillium cyclopium: heterologous expression, biochemical characterization and molecular basis for its substrate selectivity. PLoS ONE 9:e102040. https://doi.org/10.1371/journal.pone.0102040

    Article  Google Scholar 

  9. Wang J, Li K, He Y, Wang Y, Han X, Yan Y (2019) Enhanced performance of lipase immobilized onto Co2+-chelated magnetic nanoparticles and its application in biodiesel production. Fuel 255:115794. https://doi.org/10.1016/j.fuel.2019.115794

    Article  Google Scholar 

  10. Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010) Immobilization of Pseudomonas cepacia lipase onto electrospun polyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent. Biotechnol Lett 32:1059–1062. https://doi.org/10.1007/s10529-010-0279-8

    Article  Google Scholar 

  11. Rafiei S, Tangestaninejad S, Horcajada P, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F (2018) Efficient biodiesel production using a lipase@ZIF-67 nanobioreactor. Chem Eng J 334:1233–1241. https://doi.org/10.1016/j.cej.2017.10.094

    Article  Google Scholar 

  12. Adnan M, Li K, Xu L, Yan Y (2018) X-shaped ZIF-8 for immobilization Rhizomucor miehei lipase via encapsulation and its application toward biodiesel production. Catalysis 8:96. https://doi.org/10.3390/catal8030096

    Article  Google Scholar 

  13. Binhayeeding N, Klomklao S, Prasertsan P, Sangkharak K (2020) Improvement of biodiesel production using waste cooking oil and applying single and mixed immobilised lipases on polyhydroxyalkanoate. Renew Energ 162:1819–1827. https://doi.org/10.1016/j.renene.2020.10.009

    Article  Google Scholar 

  14. Mohammadi-Mahani H, Badoei-dalfard A, Karami Z (2021) Synthesis and characterization of cross-linked lipase-metal hybrid nanoflowers on graphene oxide with increasing the enzymatic stability and reusability. Biochem Eng J 172:108038. https://doi.org/10.1016/j.bej.2021.108038

    Article  Google Scholar 

  15. Picó EA, López C, Cruz-Izquierdo Á, Munarriz M, Iruretagoyena FJ, Serra JL, Llama MJ (2018) Easy reuse of magnetic cross-linked enzyme aggregates of lipase B from Candida antarctica to obtain biodiesel from Chlorella vulgaris lipids. J Biosci Bioeng 4:451–457. https://doi.org/10.1016/j.jbiosc.2018.04.009

    Article  Google Scholar 

  16. Zheng J, Wei W, Wang S, Li X, Zhang Y, Wang Z (2020) Immobilization of lipozyme TL 100L for methyl esterification of soybean oil deodorizer distillate. 3 Biotech 10:51. https://doi.org/10.1007/s13205-019-2028-6

    Article  Google Scholar 

  17. Silva VC, Batista TS, Ramos IBM, Barros TRB, Sousa BV (2016) Organophilization process and characterization of palygorskite clay (attapulgite). Mater Sci Forum 881:218–223. https://doi.org/10.4028/www.scientific.net/MSF.881.218

    Article  Google Scholar 

  18. Wang S, Ren H, Lian W, Zhang X, Liu Z, Liu Y, Zhang T, Kong LB, Bai H (2021) Dispersed spherical shell-shaped palygorskite/carbon/polyaniline composites with advanced microwave absorption performances. Powder Technol 387:277–286. https://doi.org/10.1016/j.powtec.2021.04.028

    Article  Google Scholar 

  19. Wang Y, Xu Y, Huang Q, Liang X, Sun Y, Qin X, Zhao L (2021) Effect of sterilization on cadmium immobilization and bacterial community in alkaline soil remediated by mercapto-palygorskite. Environ Pollut 273:116446. https://doi.org/10.1016/j.envpol.2021.116446

    Article  Google Scholar 

  20. Wang H, Wang X, Li J, **g H, **a S, Liu F, Zhao J (2018) Comparison of palygorskite and struvite supported palygorskite derived from phosphate recovery in wastewater for in-situ immobilization of Cu, Pb and Cd in contaminated soil. J Hazard Mater 346:273–284. https://doi.org/10.1016/j.jhazmat.2017.12.042

    Article  Google Scholar 

  21. Rosendo FRGV, Pinto LIF, de Lima IS, Trigueiro P, Honório LMC, Fonseca MG, Silva-Filho EC, Ribeiro AB, Furtini MB, Osajima JA (2020) Antimicrobial efficacy of building material based on ZnO/palygorskite against Gram-negative and Gram-positive bacteria. Appl Clay Sci 188:105499. https://doi.org/10.1016/j.clay.2020.105499

    Article  Google Scholar 

  22. Sun W, Sun X, Akhtar N, Li C, Wang W, Wang A, Wang K, Huang Y (2020) Attapulgite nanorods assisted surface engineering for separator to achieve high-performance lithium–sulfur batteries. J Energy Chem 48:364–374. https://doi.org/10.1016/j.jechem.2020.02.030

    Article  Google Scholar 

  23. He KQ, Yuan CG, Jiang YH, Li Y, Duan XL, Guo Q (2021) Highly efficient sorption and immobilization of gaseous arsenic from flue gas on MnO2/attapulgite composite with low secondary leaching risks. J Clean Prod 292:126003. https://doi.org/10.1016/j.jclepro.2021.126003

    Article  Google Scholar 

  24. Yang M, Wu X, ** X, Zhang P, Yang X, Lu R, Zhou W, Zhang S, Gao H, Li J (2016) Using β-cyclodextrin/attapulgite-immobilized ionic liquid as sorbent in dispersive solid-phase microextraction to detect the benzoylurea insecticide contents of honey and tea beverages. Food Chem 197:1064–1072. https://doi.org/10.1016/j.foodchem.2015.11.107

    Article  Google Scholar 

  25. Li Y, Hu J, Han P (2015) Synthesis of magnetically modified palygorskite composite for immobilization of Candida sp. 99–125 lipase via adsorption. Chinese J Chem Eng 23:822–826. https://doi.org/10.1016/j.cjche.2015.02.002

    Article  Google Scholar 

  26. You Q, Yin X, Zhao Y, Zhang Y (2013) Biodiesel production from jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite. Bioresour Technol 148:202–207. https://doi.org/10.1016/j.biortech.2013.08.143

    Article  Google Scholar 

  27. Zulfiqar A, Mumtaz MW, Mukhtar H, Najeeb J, Irfan A, Akram S, Touqeer T, Nabi G (2021) Lipase-PDA-TiO2 NPs: an emphatic nano-biocatalyst for optimized biodiesel production from Jatropha curcas oil. Renew Energ 169:1026–1037. https://doi.org/10.1016/j.renene.2020.12.135

    Article  Google Scholar 

  28. Malekabadi S, Badoei-dalfard A, Karami Z (2018) Biochemical characterization of a novel cold-active, halophilic and organic solvent-tolerant lipase from B. licheniformis KM12 with potential application for biodiesel production. Int J Biol Macromol 109:389–398. https://doi.org/10.1016/j.ijbiomac.2017.11.173

    Article  Google Scholar 

  29. Verdugo C, Luna D, Posadillo A, Sancho ED, Rodríguez S, Bautista F, Luque R, Marinas JM, Romero AA (2011) Production of a new second generation biodiesel with a low cost lipase derived from Thermomyces lanuginosus: optimization by response surface methodology. Catal Today 167:107–112. https://doi.org/10.1016/j.cattod.2010.12.028

    Article  Google Scholar 

  30. López BC, Cerdán LE, Medina AR, López EN, Valverde LM, Peña EH, Moreno PAG, Grima (2015) EM Production of biodiesel from vegetable oil and microalgae by fatty acid extraction and enzymatic esterification. J Biosci Bioeng 119:706–711. https://doi.org/10.1016/j.jbiosc.2014.11.002

    Article  Google Scholar 

  31. Yin P, Chen W, Liu W, Chen H, Qu R, Liu X, Tang Q, Xu Q (2013) Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol. Bioresour Technol 140:146–151. https://doi.org/10.1016/j.biortech.2013.04.082

    Article  Google Scholar 

  32. Jiang Y, Liu X, Chen Y, Zhou L, He Y, Ma L, Gao J (2014) Pickering emulsion stabilized by lipase-containing periodic mesoporous organosilica particles: a robust biocatalyst system for biodiesel production. Bioresour Technol 153:278–283. https://doi.org/10.1016/j.biortech.2013.12.001

    Article  Google Scholar 

  33. Cavalcante FTT, Neto FS, de Aguiar Falcão IR, da Silva Souza JE, de Moura Junior LS, da Silva SP, Rocha TG, de Sousa IG, de Lima Gomes PH, de Souza MCM, dos Santos JCS (2021) Opportunities for improving biodiesel production via lipase catalysis. Fuel 288:119577. https://doi.org/10.1016/j.fuel.2020.119577

    Article  Google Scholar 

  34. Tan Z, Li J, Wu M, Tang C, Zhang H, Wang J (2011) High-level heterologous expression of an alkaline lipase gene from Penicillium cyclopium PG37 in Pichia pastoris. World J Microbiol Biotechnol 27:2767–2774. https://doi.org/10.1007/s11274-011-0752-0

    Article  Google Scholar 

  35. Tan Z, Li J, Wu M, Wang J (2014) Enhancing the thermostability of a cold-active lipase from Penicillium cyclopium by in silico design of a disulfide bridge. Appl Biochem Biotechnol 173:1752–1764. https://doi.org/10.1007/s12010-014-0962-7

    Article  Google Scholar 

  36. You Q, Yin X, Gu X, Xu H, Sang L (2011) Purification, immobilization and characterization of linoleic acid isomerase on modified palygorskite. Bioprocess Biosyst Eng 34:757–765. https://doi.org/10.1007/s00449-011-0525-z

    Article  Google Scholar 

  37. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  38. Quayson E, Amoah J, Rachmadona N, Morita K, Darkwah L, Hama S, Yoshida A, Kondo A, Ogino C (2020) Valorization of palm biomass waste into carbon matrices for the immobilization of recombinant Fusarium heterosporum lipase towards palm biodiesel synthesis. Biomass Bioenerg 142:105768. https://doi.org/10.1016/j.biombioe.2020.105768

    Article  Google Scholar 

  39. Sangkharak K, Mhaisawat S, Rakkan T, Paichid N, Yunu T (2020) Utilization of mixed chicken waste for biodiesel production using single and combination of immobilized lipase as a catalyst. Biomass Convers Bior 60:1–14. https://doi.org/10.1007/s13399-020-00842-7

    Article  Google Scholar 

  40. Esmi F, Nematian T, Salehi Z, Khodadadi AA, Dalai AK (2021) Amine and aldehyde functionalized mesoporous silica on magnetic nanoparticles for enhanced lipase immobilization, biodiesel production, and facile separation. Fuel 291:120126. https://doi.org/10.1016/j.fuel.2021.120126

    Article  Google Scholar 

  41. Wang Y, Qin Z, Zhang T, Zhang D (2020) Preparation and thermophysical properties of three-dimensional attapulgite based composite phase change materials. J Energy Storage 32:101847. https://doi.org/10.1016/j.est.2020.101847

    Article  Google Scholar 

  42. Li W, Li R, Yu X, Xu X, Guo Z, Tan T, Fedosov SN (2015) Lipase-catalyzed Knoevenagel condensation in water–ethanol solvent system. Does the enzyme possess the substrate promiscuity? Biochem Eng J 101:99–107. https://doi.org/10.1016/j.bej.2015.04.021

    Article  Google Scholar 

  43. Zacharis E, Halling PJ, Rees DG (1999) Volatile buffers can override the “pH memory” of subtilisin catalysis in organic media. P Natl Acad Sci USA 96:1201–1205. https://doi.org/10.1073/pnas.96.4.1201

    Article  Google Scholar 

  44. He L, Meng J, Wang Y, Tang X, Liu X, Tang C, Ma LQ, Xu J (2021) Attapulgite and processed oyster shell powder effectively reduce cadmium accumulation in grains of rice growing in a contaminated acidic paddy field. Ecotox Environ Safe 209:111840. https://doi.org/10.1016/j.ecoenv.2020.111840

    Article  Google Scholar 

  45. Qafary M, Khajeh K, Ramazzotti M, Moosavi-Movahedi AA, Chiti F (2021) Urea titration of a lipase from Pseudomonas sp. reveals four different conformational states, with a stable partially folded state explaining its high aggregation propensity. Int J Biol Macromol 174:32–41. https://doi.org/10.1016/j.ijbiomac.2021.01.153

    Article  Google Scholar 

  46. Yin Z, Liu Y, Tan X, Jiang L, Zeng G, Liu S, Tian S, Liu S, Liu N, Li M (2019) Adsorption of 17β-estradiol by a novel attapulgite/biochar nanocomposite: characteristics and influencing factors. Process Saf Environ 121:155–164. https://doi.org/10.1016/j.psep.2018.10.022

    Article  Google Scholar 

  47. Shahedi M, Habibi Z, Yousefi M, Brask J, Mohammadi M (2021) Improvement of biodiesel production from palm oil by co-immobilization of Thermomyces lanuginosa lipase and Candida antarctica lipase B: optimization using response surface methodology. Int J Biol Macromol 170:490–502. https://doi.org/10.1016/j.ijbiomac.2020.12.181

    Article  Google Scholar 

  48. Raita M, Champreda V, Laosiripojana N (2010) Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in tert-butanol system. Process Biochem 45:829–834. https://doi.org/10.1016/j.procbio.2010.02.002

    Article  Google Scholar 

  49. Chen JW, Wu WT (2003) Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95:466–469. https://doi.org/10.1016/S1389-1723(03)80046-4

    Article  Google Scholar 

  50. Babaki M, Yousefi M, Habibi Z, Mohammadi M, Yousefi P, Mohammadi J, Brask J (2016) Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renew Energ 91:196–206. https://doi.org/10.1016/j.renene.2016.01.053

    Article  Google Scholar 

  51. Moazeni F, Chen YC, Zhang G (2019) Enzymatic transesterification for biodiesel production from used cooking oil, a review. J Clean Prod 216:117–128. https://doi.org/10.1016/j.jclepro.2019.01.181

    Article  Google Scholar 

  52. **e W, Huang M (2018) Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: characterization and application for biodiesel production. Energ Convers Manage 159:42–53. https://doi.org/10.1016/j.enconman.2018.01.021

    Article  Google Scholar 

  53. Zhong L, Feng Y, Wang G, Wang Z, Bilal M, Lv H, Jia S, Cui J (2020) Production and use of immobilized lipases in/on nanomaterials: a review from the waste to biodiesel production. Int J Biol Macromol 152:207–222. https://doi.org/10.1016/j.ijbiomac.2020.02.258

    Article  Google Scholar 

  54. Guo J, Sun S, Liu J (2020) Conversion of waste frying palm oil into biodiesel using free lipase A from Candida antarctica as a novel catalyst. Fuel 267:117323. https://doi.org/10.1016/j.fuel.2020.117323

    Article  Google Scholar 

  55. Roy PK, Datta S, Nandi S, Basir FA (2014) Effect of mass transfer kinetics for maximum production of biodiesel from Jatropha curcas oil: a mathematical approach. Fuel 134:39–44. https://doi.org/10.1016/j.fuel.2014.05.021

    Article  Google Scholar 

  56. Lotti M, Pleiss J, Valero F, Ferrer P (2015) Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel. Biotechnol J 10:22–30. https://doi.org/10.1002/biot.201400158

    Article  Google Scholar 

  57. Kulschewski T, Sasso F, Secundo F, Lotti M, Pleiss J (2013) Molecular mechanism of deactivation of C. antarctica lipase B by methanol. J Biotechnol 168:462–469. https://doi.org/10.1016/j.jbiotec.2013.10.012

    Article  Google Scholar 

  58. Wancura JH, Rosset DV, Tres MV, Oliveira JV, Mazutti MA, Jahn SL (2018) Production of biodiesel catalyzed by lipase from Thermomyces lanuginosus in its soluble form. Can J Chem Eng 96:2361–2368. https://doi.org/10.1002/cjce.23146

    Article  Google Scholar 

  59. Murillo G, He Y, Yanc Y, Sun J, Bartocci P, Ali SS, Fantozzi F (2019) Scaled-up biodiesel synthesis from Chinese Tallow Kernel oil catalyzed by Burkholderia cepacia lipase through ultrasonic assisted technology: a non-edible and alternative source of bio energy. Ultrason Sonochem 58:104658. https://doi.org/10.1016/j.ultsonch.2019.104658

    Article  Google Scholar 

  60. Nehdi IA, Sbihi HM, Blidi LE, Rashid U, Tan CP, Al-Resayes SI (2018) Biodiesel production from Citrillus colocynthis oil using enzymatic based catalytic reaction and characterization studies. Protein Pept Lett 25:164–170. https://doi.org/10.2174/0929866524666170223150839

    Article  Google Scholar 

  61. Andrade TA, Errico M, Christensen KV (2017) Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: a possible step in biodiesel production. Bioresour Technol 243:366–374. https://doi.org/10.1016/j.biortech.2017.06.118

    Article  Google Scholar 

  62. Taher H, Nashef E, Anvar N, Al-Zuhair S (2019) Enzymatic production of biodiesel from waste oil in ionic liquid medium. Biofuels 10:463–472. https://doi.org/10.1080/17597269.2017.1316145

    Article  Google Scholar 

  63. Miao C, Yang L, Wang Z, Luo W, Li H, Lv P, Yuan Z (2018) Lipase immobilization on amino-silane modified superparamagnetic Fe3O4 nanoparticles as biocatalyst for biodiesel production. Fuel 224:774–782. https://doi.org/10.1016/j.fuel.2018.02.149

    Article  Google Scholar 

  64. Tabatabaei M, Aghbashlo M, Dehhaghi M, Panahi HKS, Mollahosseini A, Hosseini M, Soufiyan MM (2019) Reactor technologies for biodiesel production and processing: a review. Prog Energ Combust 74:239–303. https://doi.org/10.1016/j.pecs.2019.06.001

    Article  Google Scholar 

  65. Yadav KNS, Adsul MG, Bastawde KB, Jadhav DD, Thulasiram HV, Gokhale DV (2011) Differential induction, purification and characterization of cold active lipase from Yarrowia lipolytica NCIM 3639. Bioresour Technol 102:10663–10670. https://doi.org/10.1016/j.biortech.2011.09.013

    Article  Google Scholar 

  66. Sakai T (2004) ‘Low-temperature method’ for a dramatic improvement in enantioselectivity in lipase-catalyzed reactions. Tetrahedron Asymmetr 15:2749–2756. https://doi.org/10.1016/j.tetasy.2004.07.058

    Article  Google Scholar 

  67. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470. https://doi.org/10.1016/j.biotechadv.2008.05.003

    Article  Google Scholar 

  68. Zhang H, Liu T, Zhu Y, Hong L, Li T, Wang X, Fu Y (2020) Lipases immobilized on the modified polyporous magnetic cellulose support as an efficient and recyclable catalyst for biodiesel production from Yellow horn seed oil. Renew Energ 145:1246–1254. https://doi.org/10.1016/j.renene.2019.06.031

    Article  Google Scholar 

  69. Su F, Li GL, Fan YL, Yan YJ (2015) Enhancing biodiesel production via a synergic effect between immobilized Rhizopus oryzae lipase and Novozym 435. Fuel Process Technol 137:298–304. https://doi.org/10.1016/j.fuproc.2015.03.013

    Article  Google Scholar 

  70. Carteret C, Jacoby J, Blin JL (2018) Using factorial experimental design to optimize biocatalytic biodiesel production from Mucor miehei lipase immobilized onto ordered mesoporous materials. Micropor Mesopor Mat 268:39–45. https://doi.org/10.1016/j.micromeso.2018.04.004

    Article  Google Scholar 

  71. Aghbashlo M, Hosseinpour S, Tabatabaei M, Dadak A (2017) Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor. Energy 132:65–78. https://doi.org/10.1016/j.energy.2017.05.041

    Article  Google Scholar 

  72. Adewale P, Dumont MJ, Ngadi M (2016) Enzyme-catalyzed synthesis and kinetics of ultrasonic assisted methanolysis of waste lard for biodiesel production. Chem Eng J 284:158–165. https://doi.org/10.1016/j.cej.2015.08.053

    Article  Google Scholar 

  73. Korkut I, Bayramoglu M (2016) Ultrasound assisted biodiesel production in presence of dolomite catalyst. Fuel 180:624–629. https://doi.org/10.1016/j.fuel.2016.04.101

    Article  Google Scholar 

  74. Korkut I, Bayramoglu M (2018) Selection of catalyst and reaction conditions for ultrasound assisted biodiesel production from canola oil. Renew Energ 116:543–551. https://doi.org/10.1016/j.renene.2017.10.010

    Article  Google Scholar 

  75. Firdaus MY, Brask J, Nielsen PM, Guo Z, Fedosov S (2016) Kinetic model of biodiesel production catalyzed by free liquid lipase from Thermomyces lanuginosus. J Mol Catal B-Enzym 133:55–64. https://doi.org/10.1016/j.molcatb.2016.07.011

    Article  Google Scholar 

  76. Pessoa FLP, Magalhães SP, Falcão PWC (2009) Kinetic study of biodiesel production by enzymatic transesterification of vegetable oils. Comput Aided Chem Eng 27:1809–1814. https://doi.org/10.1016/S1570-7946(09)70692-3

    Article  Google Scholar 

  77. Ko CH, Yeh KW, Wang YN, Wu CH, Chang FC, Cheng MH, Liou CS (2012) Impact of methanol addition strategy on enzymatic transesterification of jatropha oil for biodiesel processing. Energy 48:375–379. https://doi.org/10.1016/j.energy.2012.06.042

    Article  Google Scholar 

  78. Elkelawy M, Bastawissi HAE, Esmaeil KK, Radwan AM, Panchal H, Sadasivuni KK, Ponnamma D, Walvekar R (2019) Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with diesel/biodiesel blends. Fuel 255:115791. https://doi.org/10.1016/j.fuel.2019.115791

    Article  Google Scholar 

  79. Tosun E, Özcanlı M (2021) Hydrogen enrichment effects on performance and emission characteristics of a diesel engine operated with diesel-soybean biodiesel blends with nanoparticle addition. Eng Sci Technol 24:648–654. https://doi.org/10.1016/j.jestch.2020.12.022

    Article  Google Scholar 

  80. Giakoumis EG, Sarakatsanis CK (2018) Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel 222:574–585. https://doi.org/10.1016/j.fuel.2018.02.187

    Article  Google Scholar 

  81. ASTM D6751-20a (2020) Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/D6751-20A

  82. Athar M, Zaidi S (2020) A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. J Environ Chem Eng 8:104523. https://doi.org/10.1016/j.jece.2020.104523

    Article  Google Scholar 

Download references

Funding

This work was supported by the Huai’an Science and Technology (Guiding) Project (No. HABZ201706), the Open Project of Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration (No. JPELBCPL2014003), the Natural Science Research Project of Huaiyin Institute of Technology (No. 15HGZ007), and the Key Laboratory of Regional Resource Exploitation and Medicinal Research Project Fund (No. LPRK201905).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongbiao Tan or **angqian Li.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Z., Zhou, J., Li, X. et al. Immobilization of a cold-adaptive recombinant Penicillium cyclopium lipase on modified palygorskite for biodiesel preparation. Biomass Conv. Bioref. 12, 5317–5328 (2022). https://doi.org/10.1007/s13399-021-02006-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02006-7

Keywords

Navigation