Log in

Adsorption thermodynamics of cationic dye on hydrolysis lignin-acrylic acid adsorbent

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Enzymatic saccharification is widely used for producing sugars from woody biomass while generating hydrolysis lignin as a by-product. Hydrolysis lignin produced in this saccharification process is under-utilized due to its poor solubility and reactivity. In this paper, hydrolysis lignin (HL) was polymerized with acrylic acid (AA) by using potassium persulfate as the initiator under alkaline aqueous conditions to produce coagulant and adsorbent to be used as aids in wastewater treatment processes. The polymerization produced soluble anionic polymers with a solubility of 5.1 g/L, charge density of − 6 mmol/g, and molecular weight of 3.8 × 105 g/mol. This soluble AA-g-HL polymer removed 95% cationic dye (basic blue 41) from an aqueous system at 1.2 g/g by forming polyelectrolyte complexes with dye molecules. The insoluble AA-g-HL polymer removed 46% of cationic dye at the dosage of 3 g/g via adsorption. Experimental data were fitted into various isotherm and kinetic models to identify the best description of the adsorption systems, and the corresponding thermodynamic parameters were determined. The Langmuir isotherm model revealed that the maximum theoretical adsorption capacity of dye (227 mg/g) on insoluble AA-g-HL was higher than that (52 mg/g) on HL. The kinetics data followed the pseudo-second model. The thermodynamic parameters indicated that adsorption onto AA-g-HL was an exothermic spontaneous process. Both the mean free energy and the magnitude of free enthalpy change verified that the main mechanism was physical adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The original data of this work is available upon request from the corresponding author.

References

  1. Zhang X, Tu M, Paice MG (2011) Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses. BioEnergy Res 4(4):246–257. https://doi.org/10.1007/s12155-011-9147-1

    Article  Google Scholar 

  2. Wahlström R, Kalliola A, Heikkinen J, Kyllönen H, Tamminen T (2017) Lignin cationization with glycidyltrimethylammonium chloride aiming at water purification applications. Ind Crops Prod 104:188–194. https://doi.org/10.1016/j.indcrop.2017.04.026

    Article  Google Scholar 

  3. Várnai A, Siika-aho M, Viikari L (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb Technol 46(3–4):185–193. https://doi.org/10.1016/j.enzmictec.2009.12.013

    Article  Google Scholar 

  4. Yuan Z, Browne T, Zhang X (2011) Biomass fractionation process for bioproducts. US Patent 143411:A1

  5. Hu X, Gil-Chavez J, Hadzi-Ristic A, Kreft C, Lim CR, Zetzl C, Smirnova I (2019) Lignin from second-generation biorefinery for pressure-sensitive adhesive tapes. Biomass Conv Bioref :1–12. https://doi.org/10.1007/s13399-019-00508-z

  6. Qian Y, Deng Y, Qiu X, Li H, Yang D (2014) Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pul** spent liquor. Green Chem 16(4):2156–2163. https://doi.org/10.1039/C3GC42131G

    Article  Google Scholar 

  7. Matsushita Y, Yasuda S (2005) Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin. Bioresour Technol 96(4):465–470. https://doi.org/10.1016/j.biortech.2004.05.023

    Article  Google Scholar 

  8. Fazal T, Faisal A, Mushtaq A, Hafeez A, Javed F, Din AA, Rashid N, Aslam M, Rehman MSU, Rehman F (2019) Macroalgae and coal-based biochar as a sustainable bioresource reuse for treatment of textile wastewater. Biomass Conv Bioref: 1-16.https://doi.org/10.1007/s13399-019-00555-6

  9. Chethana M, Sorokhaibam LG, Bhandari VM, Raja S, Ranade VV (2016) Green approach to dye wastewater treatment using biocoagulants. ACS Sustain Chem Eng 4(5):2495–2507. https://doi.org/10.1021/acssuschemeng.5b01553

    Article  Google Scholar 

  10. Fatombi JK, Osseni SA, Idohou EA, Agani I, Neumeyer D, Verelst M, Mauricot R, Aminou T (2019) Characterization and application of alkali-soluble polysaccharide of Carica papaya seeds for removal of indigo carmine and Congo red dyes from single and binary solutions. J Environ Chem Eng 7(5):103343. https://doi.org/10.1016/j.jece.2019.103343

    Article  Google Scholar 

  11. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manage 93(1):154–168. https://doi.org/10.1016/j.jenvman.2011.09.012

    Article  Google Scholar 

  12. Sarkar AK, Mandre N, Panda A, Pal S (2013) Amylopectin grafted with poly (acrylic acid): development and application of a high performance flocculant. Carbohydr Polym 95(2):753–759. https://doi.org/10.1016/j.carbpol.2013.03.025

    Article  Google Scholar 

  13. Li Y, Wu M, Wang B, Wu Y, Ma M, Zhang X (2016) Synthesis of magnetic lignin-based hollow microspheres: a highly adsorptive and reusable adsorbent derived from renewable resources. ACS Sustain Chem Eng 4(10):5523–5532. https://doi.org/10.1021/acssuschemeng.6b01244

    Article  Google Scholar 

  14. Kong F, Wang S, Price JT, Konduri MKR, Fatehi P (2015) Water soluble kraft lignin–acrylic acid copolymer: synthesis and characterization. Green Chem 17:4355. https://doi.org/10.1039/C5GC00228A

    Article  Google Scholar 

  15. He W, Zhang Y, Fatehi P (2016) Sulfomethylated kraft lignin as a flocculant for cationic dye. Colloids Surf, A 503:19–27. https://doi.org/10.1016/j.colsurfa.2016.05.009

    Article  Google Scholar 

  16. Chen L, Guangxia W, Huanzhen M, Zonghuan Y, Lianyi T, **angwei L (2008) Synthesis and application of lignin-based copolymer LSAA on controlling non-point source pollution resulted from surface runoff. J Environ Sci 20(7):820–826. https://doi.org/10.1016/S1001-0742(08)62132-4

    Article  Google Scholar 

  17. Rong H, Gao B, Dong M, Zhao Y, Sun S, Yue Q, Li Q (2013) Characterization of size, strength and structure of aluminum-polymer dual-coagulant flocs under different pH and hydraulic conditions. J Hazard Mater 252:330–337. https://doi.org/10.1016/j.jhazmat.2013.03.011

    Article  Google Scholar 

  18. Gopinathan R, Bhowal A, Garlapati C (2019) Adsorption studies of some anionic dyes adsorbed by chitosan and new four-parameter adsorption isotherm model. J Chem Eng Data 64(6):2320–2328. https://doi.org/10.1021/acs.jced.8b01102

    Article  Google Scholar 

  19. Subramani S, Thinakaran N (2017) Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Process Saf Environ 106:1–10. https://doi.org/10.1016/j.psep.2016.11.024

    Article  Google Scholar 

  20. Machado Garcia R, Carleer R, Arada Pérez M, Gryglewicz G, Maggen J, Haeldermans T, Yperman J (2020) Adsorption of cibacron yellow F-4G dye onto activated carbons obtained from peanut hull and rice husk: kinetics and equilibrium studies. Biomass Conv Bioref:1–17. https://doi.org/10.1007/s13399-020-00699-w

  21. Mahmoud HR, Ibrahim SM, El-Molla SA (2016) Textile dye removal from aqueous solutions using cheap MgO nanomaterials: adsorption kinetics, isotherm studies and thermodynamics. Adv Powder Technol 27(1):223–231. https://doi.org/10.1016/j.apt.2015.12.006

    Article  Google Scholar 

  22. Emrooz HBM, Maleki M, Rashidi A, Shokouhimehr M (2020) Adsorption mechanism of a cationic dye on a biomass-derived micro-and mesoporous carbon: structural, kinetic, and equilibrium insight. Biomass Conv Bioref 11(3):1–12. https://doi.org/10.1007/s13399-019-00584-1

    Article  Google Scholar 

  23. Gimbert F, Morin-Crini N, Renault F, Badot P-M, Crini G (2008) Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J Hazard Mater 157(1):34–46. https://doi.org/10.1016/j.jhazmat.2007.12.072

    Article  Google Scholar 

  24. Andersson KI, Eriksson M, Norgren M (2011) Removal of lignin from wastewater generated by mechanical pul** using activated charcoal and fly ash: adsorption kinetics. Ind Eng Chem Res 50(13):7733–7739. https://doi.org/10.1021/ie200379p

    Article  Google Scholar 

  25. Zhang Y, Fatehi P (2019) Periodate oxidation of carbohydrate-enriched hydrolysis lignin and its application as coagulant for aluminum oxide suspension. Ind Crops Prod 130:81–95. https://doi.org/10.1016/j.indcrop.2018.12.052

    Article  Google Scholar 

  26. Bourbonnais R, Paice M, Freiermuth B, Bodie E, Borneman S (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63(12):4627. https://doi.org/10.1128/aem.63.12.4627-4632.1997

    Article  Google Scholar 

  27. Fatehi P, Gao W, Sun Y, Dashtban M (2016) Acidification of prehydrolysis liquor and spent liquor of neutral sulfite semichemical pul** process. Bioresour Technol 218:518–525. https://doi.org/10.1016/j.biortech.2016.06.138

    Article  Google Scholar 

  28. Hackley VA, Patton J, Lum L-SH, Wäsche RJ, Naito M, Abe H, Hotta Y, Pendse H (2002) Analysis of the isoelectric point in moderately concentrated alumina suspensions using electroacoustic and streaming potential methods. J Disper Sci Technol 23(5):601–617. https://doi.org/10.1081/DIS-120015366

    Article  Google Scholar 

  29. Couch RL, Price JT, Fatehi P (2016) Production of flocculant from thermomechanical pul** lignin via nitric acid treatment. ACS Sustain Chem Eng 4(4):1954–1962. https://doi.org/10.1021/acssuschemeng.5b01129

    Article  Google Scholar 

  30. Kam S-k, Gregory J (1999) Charge determination of synthetic cationic polyelectrolytes by colloid titration. Colloid Surface A 159(1):165–179. https://doi.org/10.1016/S0927-7757(99)00172-7

    Article  Google Scholar 

  31. Konduri MK, Fatehi P (2016) Synthesis and characterization of carboxymethylated xylan and its application as a dispersant. Carbohydr Polym 146:26–35. https://doi.org/10.1016/j.carbpol.2016.03.036

    Article  Google Scholar 

  32. Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5(1):1–18. https://doi.org/10.4172/2157-7048.1000182

    Article  Google Scholar 

  33. Mengual O, Meunier G, Cayré I, Puech K, Snabre P (1999) TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta 50(2):445–456. https://doi.org/10.1016/S0039-9140(99)00129-0

    Article  Google Scholar 

  34. Wiśniewska M, Terpiłowski K, Chibowski S, Urban T, Zarko VI, Gun’ko VM, (2013) Effect of polyacrylic acid (PAA) adsorption on stability of mixed alumina-silica oxide suspension. Powder Technol 233:190–200. https://doi.org/10.1016/j.powtec.2012.08.037

    Article  Google Scholar 

  35. Yan M, Yang D, Deng Y, Chen P, Zhou H, Qiu X (2010) Influence of pH on the behavior of lignosulfonate macromolecules in aqueous solution. Colloid Surface A 371(1):50–58. https://doi.org/10.1016/j.colsurfa.2010.08.062

    Article  Google Scholar 

  36. Mittal A, Mittal J, Malviya A, Kaur D, Gupta V (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343(2):463–473. https://doi.org/10.1016/j.jcis.2009.11.060

    Article  Google Scholar 

  37. Zhao Y, Shakeel U, Saif Ur Rehman M, Li H, Xu X, Xu J (2020) Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. J Clean Prod 253:120076. https://doi.org/10.1016/j.jclepro.2020.120076

    Article  Google Scholar 

  38. Tarasov D, Leitch M, Fatehi P (2018) Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol Biofuels 11(1):269. https://doi.org/10.1186/s13068-018-1262-1

    Article  Google Scholar 

  39. Gao W, Fatehi P (2019) Lignin for polymer and nanoparticle production: current status and challenges. Can J Chem Eng 97(11):2827–2842. https://doi.org/10.1002/cjce.23620

    Article  Google Scholar 

  40. Lanzalunga O, Bietti M (2000) Photo-and radiation chemical induced degradation of lignin model compounds. J Photoch Photobio B 56(2–3):85–108. https://doi.org/10.1016/S1011-1344(00)00054-3

    Article  Google Scholar 

  41. Xu D, Liu Z, Zhou W, Zhao X, Fu C, Fatehi P, Kong F, Yang G, Wang S (2019) Preparation of xylan–acrylic acid polymer with high molecular weight and its application as a dye removal flocculant. J Wood Chem Technol 39(2):75–89. https://doi.org/10.1080/02773813.2018.1508300

    Article  Google Scholar 

  42. Witono J, Noordergraaf I, Heeres H, Janssen L (2012) Graft copolymerization of acrylic acid to cassava starch—evaluation of the influences of process parameters by an experimental design method. Carbohydr Polym 90(4):1522–1529. https://doi.org/10.1016/j.carbpol.2012.07.024

    Article  Google Scholar 

  43. Chen R, Kokta B, Daneault C, Valade J (1986) Some water-soluble copolymers from lignin. J Appl Polym Sci 32(5):4815–4826. https://doi.org/10.1002/app.1986.070320504

    Article  Google Scholar 

  44. Khalil M, Mostafa KM, Hebeish A (1993) Graft polymerization of acrylamide onto maize starch using potassium persulfate as initiator. Macromol Chem Phys 213(1):43–54. https://doi.org/10.1002/apmc.1993.052130106

    Article  Google Scholar 

  45. Panesar SS, Jacob S, Misra M, Mohanty AK (2013) Functionalization of lignin: fundamental studies on aqueous graft copolymerization with vinyl acetate. Ind Crops Prod 46:191–196. https://doi.org/10.1016/j.indcrop.2012.12.031

    Article  Google Scholar 

  46. Petridis L, Schulz R, Smith JC (2011) Simulation analysis of the temperature dependence of lignin structure and dynamics. J Am Chem Soc 133(50):20277–20287. https://doi.org/10.1021/ja206839u

    Article  Google Scholar 

  47. Witono JR, Marsman JH, Noordergraaf I-W, Heeres HJ, Janssen LP (2013) Improved homopolymer separation to enable the application of 1H NMR and HPLC for the determination of the reaction parameters of the graft copolymerization of acrylic acid onto starch. Carbohydr Res 370:38–45. https://doi.org/10.1016/j.carres.2013.01.017

    Article  Google Scholar 

  48. Samaha S, Nasr H, Hebeish A (2005) Synthesis and characterization of starch-poly (vinyl acetate) graft copolymers and their saponified form. J Polym Res 12(5):343–353. https://doi.org/10.1007/s10965-004-7937-2

    Article  Google Scholar 

  49. Ye D-z, Jiang X-c, **a C, Liu L, Zhang X (2012) Graft polymers of eucalyptus lignosulfonate calcium with acrylic acid: synthesis and characterization. Carbohydr Polym 89(3):876–882. https://doi.org/10.1016/j.carbpol.2012.04.024

    Article  Google Scholar 

  50. Nagy M, Kosa M, Theliander H, Ragauskas AJ (2010) Characterization of CO2 precipitated kraft lignin to promote its utilization. Green Chem 12(1):31–34. https://doi.org/10.1039/B913602A

    Article  Google Scholar 

  51. Hu L, Pan H, Zhou Y, Hse C-Y, Liu C, Zhang B, Xu B (2014) Chemical groups and structural characterization of lignin via thiol-mediated demethylation. J Wood Chem Technol 34(2):122–134. https://doi.org/10.1080/02773813.2013.844165

    Article  Google Scholar 

  52. Vanerek A, Van de Ven T (2006) Coacervate complex formation between cationic polyacrylamide and anionic sulfonated kraft lignin. Colloid Surfacs A 273(1–3):55–62. https://doi.org/10.1016/j.colsurfa.2005.08.005

    Article  Google Scholar 

  53. Kekkonen J, Lattu H, Stenius P (2001) Adsorption kinetics of complexes formed by oppositely charged polyelectrolytes. J Colloid Interface Sci 234(2):384–392. https://doi.org/10.1006/jcis.2000.7326

    Article  Google Scholar 

  54. AelU M, Çiftçi H, Alver E (2013) Efficient removal of acidic dye using low-cost biocomposite beads. Ind Eng Chem Res 52(31):10569–10581. https://doi.org/10.1021/ie400480s

    Article  Google Scholar 

  55. Mittal A, Mittal J, Malviya A, Kaur D, Gupta V (2010) Decoloration treatment of a hazardous triarylmethane dye, light green SF (yellowish) by waste material adsorbents. J Colloid Interface Sci 342(2):518–527. https://doi.org/10.1016/j.jcis.2009.10.046

    Article  Google Scholar 

  56. Abdullah M, Chiang L, Nadeem M (2009) Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents. Chem Eng J 146(3):370–376. https://doi.org/10.1016/j.cej.2008.06.018

    Article  Google Scholar 

  57. Zambare R, Song X, Bhuvana S, Antony Prince JS, Nemade P (2017) Ultrafast dye removal using ionic liquid–graphene oxide sponge. ACS Sustain Chem Eng 5(7):6026–6035. https://doi.org/10.1021/acssuschemeng.7b00867

    Article  Google Scholar 

  58. Meng L, Zhang X, Tang Y, Su K, Kong J (2015) Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes. Sci Rep 5(1):1–16. https://doi.org/10.1038/srep07910

    Article  Google Scholar 

  59. Liu J, Yu H, Liang Q, Liu Y, Shen J, Bai Q (2017) Preparation of polyhedral oligomeric silsesquioxane based cross-linked inorganic-organic nanohybrid as adsorbent for selective removal of acidic dyes from aqueous solution. J Colloid Interface Sci 497:402–412. https://doi.org/10.1016/j.jcis.2017.03.028

    Article  Google Scholar 

  60. Errais E, Duplay J, Darragi F, M’Rabet I, Aubert A, Huber F, Morvan G (2011) Efficient anionic dye adsorption on natural untreated clay: kinetic study and thermodynamic parameters. Desalination 275(1–3):74–81. https://doi.org/10.1016/j.desal.2011.02.031

    Article  Google Scholar 

  61. Alqadami AA, Naushad M, Abdalla MA, Khan MR, Alothman ZA (2016) Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies. J Chem Eng Data 61(11):3806–3813. https://doi.org/10.1021/acs.jced.6b00446

    Article  Google Scholar 

  62. Han X, Wang W, Ma X (2011) Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. Chem Eng J 171(1):1–8. https://doi.org/10.1016/j.cej.2011.02.067

    Article  Google Scholar 

  63. Idohou EA, Fatombi JK, Osseni SA, Agani I, Neumeyer D, Verelst M, Mauricot R, Aminou T (2020) Preparation of activated carbon/chitosan/Carica papaya seeds composite for efficient adsorption of cationic dye from aqueous solution. Surf Interfaces 21:100741. https://doi.org/10.1016/j.surfin.2020.100741

    Article  Google Scholar 

Download references

Funding

The financial support of this work was provided by NSERC-Canada, Canada Foundation for Innovation, Ontario Research Fund, Northern Ontario Heritage Fund Corporation-Industrial Research Chair, and Canada Research Chair programs.

Author information

Authors and Affiliations

Authors

Contributions

Y. Zhang prepared the original draft, W. Gao revised the paper, and F. Kong helped Y. Zhang and W. Gao in the analysis. P. Fatehi was the supervisor of the project.

Corresponding authors

Correspondence to Fangong Kong or Pedram Fatehi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gao, W., Kong, F. et al. Adsorption thermodynamics of cationic dye on hydrolysis lignin-acrylic acid adsorbent. Biomass Conv. Bioref. 13, 7011–7026 (2023). https://doi.org/10.1007/s13399-021-01659-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01659-8

Keywords

Navigation