Log in

A Unified Deep Learning Framework of Multi-scale Detectors for Geo-spatial Object Detection in High-Resolution Satellite Images

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Geo-spatial object detection in high-resolution satellite images has many applications in urban planning, military applications, maritime surveillance, environment control and management. Despite the success of convolutional neural networks in object detection tasks in natural images, the current deep learning models face challenges in geo-spatial object detection in satellite images due to complex background, arbitrary views and large variations in object sizes. In this paper, we propose a framework that tackles these problems in efficient and effective way. The framework consists of two stages. The first stage generates multi-scale object proposals and the second stage classifies each proposal into different classes. The first stage utilizes feature pyramid network to obtain multi-scale feature maps and then convert each level of the pyramid into an independent multi-scale proposal generator by appending multiple region proposal networks (RPNs). We define scale range for each RPN to capture different scales of the target. The multi-scale object proposals are provided as input to the detection sub-network. We evaluate proposed framework on publicly available benchmark dataset, and from the experiment results, we demonstrate that proposed framework outperformed other reference methods

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dong, Z.; Wang, M.; Wang, Y.; Zhu, Y.; Zhang, Z.: Object detection in high resolution remote sensing imagery based on convolutional neural networks with suitable object scale features. IEEE Trans. Geosci. Remote Sens. 58(3), 2104–2114 (2019)

    Article  Google Scholar 

  2. Aksoy, S.; Akçay, H.G.; Wassenaar, T.: Automatic map** of linear woody vegetation features in agricultural landscapes using very high resolution imagery. IEEE Trans. Geosci. Remote Sens. 48(1), 511–522 (2009)

    Article  Google Scholar 

  3. Holsten, S.: Global maritime surveillance with satellite-based ais. In: OCEANS 2009-EUROPE, pp. 1–4. IEEE (2009)

  4. Kaack, L.H.; Chen, G.H.; Morgan, M.G.: Truck traffic monitoring with satellite images. In: Proceedings of the 2nd ACM SIGCAS Conference on Computing and Sustainable Societies, pp. 155–164 (2019)

  5. Sirmacek, B.; Unsalan, C.: A probabilistic framework to detect buildings in aerial and satellite images. IEEE Trans. Geosci. Remote Sens. 49(1), 211–221 (2010)

    Article  Google Scholar 

  6. Kwan, C.; Ayhan, B.; Budavari, B.; Yan, L.; Perez, D.; Li, J.; Bernabe, S.; Plaza, A.: Deep learning for land cover classification using only a few bands. Remote Sens. 12(12), 2000 (2020)

    Article  Google Scholar 

  7. Zhang, X.; Zhu, K.; Chen, G.; Tan, X.; Zhang, L.; Dai, F.; Liao, P.; Gong, Y.: Geospatial object detection on high resolution remote sensing imagery based on double multi-scale feature pyramid network. Remote Sens. 11(7), 755 (2019)

    Article  Google Scholar 

  8. Chen, S.; Zhan, R.; Zhang, J.: Geospatial object detection in remote sensing imagery based on multiscale single-shot detector with activated semantics. Remote Sens. 10(6), 820 (2018)

    Article  Google Scholar 

  9. Tao, C.; Tan, Y.; Cai, H.; Tian, J.: Airport detection from large ikonos images using clustered sift keypoints and region information. IEEE Geosci. Remote Sens. Lett. 8(1), 128–132 (2010)

    Article  Google Scholar 

  10. **ao, Z.; Liu, Q.; Tang, G.; Zhai, X.: Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images. Int. J. Remote Sens. 36(2), 618–644 (2015)

    Article  Google Scholar 

  11. Sun, H.; Sun, X.; Wang, H.; Yu, L.; Li, X.: Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model. IEEE Geosci. Remote Sens. Lett. 9(1), 109–113 (2011)

    Article  Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Wallach, H.M.: Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 977–984 (2006)

  14. Dalal, N.; Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

  15. Kim, S.-W.; Kook, H.-K.; Sun, J.-Y.; Kang, M.-C.; Ko, S.-J .: Parallel feature pyramid network for object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 234–250 (2018)

  16. Kong, T.; Sun, F.; Tan, C.; Liu, H.; Huang, W.: Deep feature pyramid reconfiguration for object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 169–185 (2018)

  17. Liu, Y.; Li, H.; Yan, J.; Wei, F.; Wang, X; Tang, X.: Recurrent scale approximation for object detection in CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 571–579 (2017)

  18. Singh, B.; Davis, L.S.: An analysis of scale invariance in object detection snip. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3578–3587 (2018)

  19. Piralilou, S.T.; Shahabi, H.; Jarihani, B.; Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Aryal, J.: Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas. Remote Sens. 11(21), 2575 (2019)

    Article  Google Scholar 

  20. Tengtrairat, N.; Woo, W.L.; Parathai, P.; Aryupong, C.; Jitsangiam, P.; Rinchumphu, D.: Automated landslide-risk prediction using web gis and machine learning models. Sensors 21(13), 4620 (2021)

    Article  Google Scholar 

  21. Chen, X.; Tian, G.Y.; Ding, S.; Ahmed, J.; Woo, W.L.: Tomographic reconstruction of rolling contact fatigues in rails using 3d eddy current pulsed thermography. IEEE Sens. J. 6, 66 (2021)

    Google Scholar 

  22. Ahonen, T.; Hadid, A.; Pietikäinen, M.: Face recognition with local binary patterns. In: European Conference on Computer Vision, pp. 469–481. Springer (2004)

  23. Dang, E.K.F.; Luk, R.W.P.; Allan, J.: Beyond bag-of-words: bigram-enhanced context-dependent term weights. J. Assoc. Inf. Sci. Technol. 65(6), 1134–1148 (2014)

    Article  Google Scholar 

  24. Lee, H.; Battle, A.; Raina, R.; Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems, pp. 801–808 (2007)

  25. Inglada, J.: Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS J. Photogramm. Remote Sens. 62(3), 236–248 (2007)

    Article  Google Scholar 

  26. Hwang, J.; Jung, H.-S.: Automatic ship detection using the artificial neural network and support vector machine from x-band sar satellite images. Remote Sens. 10(11), 1799 (2018)

    Article  Google Scholar 

  27. Li, W.; **ang, S.; Wang, H.; Pan, C.: Robust airplane detection in satellite images. In: 2011 18th IEEE International Conference on Image Processing, pp. 2821–2824. IEEE (2011)

  28. Shi, Z.; Yu, X.; Jiang, Z.; Li, B.: Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature. IEEE Trans. Geosci. Remote Sens. 52(8), 4511–4523 (2013)

    Google Scholar 

  29. Cover, T.; Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  30. Ma, L.; Crawford, M.M.; Tian, J.: Local manifold learning-based \( k \)-nearest-neighbor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48(11), 4099–4109 (2010)

    Google Scholar 

  31. Yang, J.-M.; Yu, P.-T.; Kuo, B.-C.: A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data. IEEE Trans. Geosci. Remote Sens. 48(3), 1279–1293 (2009)

    Article  Google Scholar 

  32. Lafferty, J.; McCallum, A.; Pereira, F.C.N.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data (2001)

  33. Zhong, P.; Wang, R.: A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images. IEEE Trans. Geosci. Remote Sens 45(12), 3978–3988 (2007)

    Article  Google Scholar 

  34. Li, E.; Femiani, J.; Shibiao, X.; Zhang, X.; Wonka, P.: Robust rooftop extraction from visible band images using higher order crf. IEEE Trans. Geosci. Remote Sens. 53(8), 4483–4495 (2015)

    Article  Google Scholar 

  35. Wegne, J.D.; Soergel, U.; Rosenhahn, B.: Segment-based building detection with conditional random fields. In: 2011 Joint Urban Remote Sensing Event, pp. 205–208. IEEE (2011)

  36. Yao, X.; Han, J.; Guo, L.; Shuhui, B.; Liu, Z.: A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and crf. Neurocomputing 164, 162–172 (2015)

    Article  Google Scholar 

  37. Malek, S.; Bazi, Y.; Alajlan, N.; AlHichri, H.; Melgani, F.: Efficient framework for palm tree detection in UAV images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(12), 4692–4703 (2014)

    Article  Google Scholar 

  38. Tang, J.; Deng, C.; Huang, G.-B.; Zhao, B.: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53(3), 1174–1185 (2014)

    Article  Google Scholar 

  39. **, X.; Davis, C.H.: Vehicle detection from high-resolution satellite imagery using morphological shared-weight neural networks. Image Vis. Comput. 25(9), 1422–1431 (2007)

    Article  Google Scholar 

  40. Mokhtarzade, M.; Valadan, M.J.; Zoej, A.: Road detection from high-resolution satellite images using artificial neural networks. Int. J. Appl. Earth Observ. Geoinform. 9(1), 32–40 (2007)

    Article  Google Scholar 

  41. Pacifici, F.; Chini, M.; Emery, W.J.: A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 113(6), 1276–1292 (2009)

    Article  Google Scholar 

  42. Hu, B.; Gao, B.; Woo, W.L.; Ruan, L.; **, J.; Yang, Y.; Yu, Y.: A lightweight spatial and temporal multi-feature fusion network for defect detection. IEEE Trans. Image Process. 30, 472–486 (2020)

    Article  Google Scholar 

  43. Ruan, L.; Gao, B.; Wu, S.; Woo, W.L.: Deftectnet: joint loss structured deep adversarial network for thermography defect detecting system. Neurocomputing 417, 441–457 (2020)

    Article  Google Scholar 

  44. David Koh, B.H.; Lim, C.L.P.; Rahimi, H.; Woo, W.L.; Gao, B.: Deep temporal convolution network for time series classification. Sensors 21(2), 603 (2021)

    Article  Google Scholar 

  45. Ircio, J.; Lojo, A.; Mori, U.; Lozano, J.A.: Mutual information based feature subset selection in multivariate time series classification. Pattern Recognit. 108, 107525 (2020)

    Article  Google Scholar 

  46. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J.: Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 159, 296–307 (2020)

    Article  Google Scholar 

  47. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

  48. Uijlings, J.R.R.; Van De Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  49. Ren, S.; He, K.; Girshick, R.; Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

  50. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.: Mask r-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

  51. Dai, J.; Li, Y.; He, K.; Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

  52. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

  53. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

  54. Redmon, J.; Farhadi, A.: Yolov3: an incremental improvement. ar**v preprint ar**v:1804.02767 (2018)

  55. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S., Fu, C.-Y., Berg, A.C.: Ssd: single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37. Springer (2016)

  56. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. ar**v preprint ar**v:1312.6229 (2013)

  57. Ren, Y.; Zhu, C.; **ao, S.: Small object detection in optical remote sensing images via modified faster r-CNN. Appl. Sci. 8(5), 813 (2018)

    Article  Google Scholar 

  58. Pang, J.; Li, C.; Shi, J.; Zhihai, X.; Feng, H.: Fast tiny object detection in large-scale remote sensing images. IEEE Trans. Geosci. Remote Sens. 57(8), 5512–5524 (2019)

    Article  Google Scholar 

  59. Cheng, G.; Si, Y.; Hong, H.; Yao, X.; Guo, L.: Cross-scale feature fusion for object detection in optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 6, 66 (2020)

    Google Scholar 

  60. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M.: Yolov4: optimal speed and accuracy of object detection. ar**v preprint ar**v:2004.10934 (2020)

  61. Tan, M.; Pang, R.; Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

  62. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

  63. Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J.: Panet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)

  64. Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J.: When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 56(5), 2811–2821 (2018)

    Article  Google Scholar 

  65. Cheng, G.; Zhou, P.; Han, J.: Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 54(12), 7405–7415 (2016)

    Article  Google Scholar 

  66. Cheng, L.; Liu, X.; Li, L.; Jiao, L.; Tang, X.: Deep adaptive proposal network for object detection in optical remote sensing images. ar**v preprint ar**v:1807.07327 (2018)

  67. Farooq, A.; Hu, J.; Jia, X.: Efficient object proposals extraction for target detection in vhr remote sensing images. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3337–3340. IEEE (2017)

  68. Guo, W.; Yang, W.; Zhang, H.; Hua, G.: Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network. Remote Sens. 10(1), 131 (2018)

    Article  Google Scholar 

  69. Han, J.; Zhang, D.; Cheng, G.; Guo, L.; Ren, J.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 53(6), 3325–3337 (2014)

    Article  Google Scholar 

  70. Han, X.; Zhong, Y.; Feng, R.; Zhang, L.: Robust geospatial object detection based on pre-trained faster r-CNN framework for high spatial resolution imagery. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3353–3356. IEEE (2017)

  71. Li, K.; Cheng, G.; Shuhui, B.; You, X.: Rotation-insensitive and context-augmented object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 56(4), 2337–2348 (2017)

    Article  Google Scholar 

  72. Ševo, I.; Avramović, A.: Convolutional neural network based automatic object detection on aerial images. IEEE Geosci. Remote Sens.Lett. 13(5), 740–744 (2016)

    Article  Google Scholar 

  73. Long, Y.; Gong, Y.; **ao, Z.; Liu, Q.: Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55(5), 2486–2498 (2017)

    Article  Google Scholar 

  74. Turner, J.T.; Gupta, K.; Morris, B.; Aha, D.W.: Keypoint density-based region proposal for fine-grained object detection and classification using regions with convolutional neural network features. ar**. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 328–335 (2014)

  75. Cai, Z.; Fan, Q.; Feris, R.S.; Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: European Conference on Computer Vision, pp. 354–370. Springer (2016)

  76. Zhuang, S.; Wang, P.; Jiang, B.; Wang, G.; Wang, C.: A single shot framework with multi-scale feature fusion for geospatial object detection. Remote Sens. 11(5), 594 (2019)

    Article  Google Scholar 

  77. Sultan Daud Khan and Saleh Basalamah: Multi-scale person localization with multi-stage deep sequential framework. Int. J. Comput. Intell. Syst. 14(1), 1217–1228 (2021)

    Article  Google Scholar 

  78. Khan, S.D.; Basalamah, S.: Scale and density invariant head detection deep model for crowd counting in pedestrian crowds. Vis. Comput. 66, 1–11 (2020)

    Google Scholar 

  79. Tan, X.; **ao, Z.; Wan, Q.; Shao, W.: Scale sensitive neural network for road segmentation in high-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 18(3), 533–537 (2020)

    Article  Google Scholar 

  80. He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  81. Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ar**v preprint ar**v:1409.1556 (2014)

  82. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

  83. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

  84. Jie, Z.; Lu, W.F.; Sakhavi, S.; Wei, Y.; Tay, E.H.F.; Yan, S.: Object proposal generation with fully convolutional networks. IEEE Trans. Circuits Syst. Video Technol. 28(1), 62–75 (2016)

    Article  Google Scholar 

  85. Yang, S.; **ong, Y.; Loy, C.C.; Tang, X.: Face detection through scale-friendly deep convolutional networks. ar**v preprint ar**v:1706.02863 (2017)

  86. Müller, J.; Fregin, A.; Dietmayer, K.: Disparity sliding window: object proposals from disparity images. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5777–5784. IEEE (2018)

  87. Girshick, R.: Fast r-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

  88. Glorot, X.; Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

  89. Cheng, G.; Han, J.; Zhou, P.; Guo, L.: Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 98, 119–132 (2014)

    Article  Google Scholar 

  90. Cheng, G.; Han, J.: A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 117, 11–28 (2016)

    Article  Google Scholar 

  91. Cramer, M.: The dgpf-test on digital airborne camera evaluation—overview and test design. Photogrammetrie Fernerkundung Geoinform. 66(2), 73–82 (2010)

    Article  MathSciNet  Google Scholar 

  92. Zhang, D.; Han, J.; Cheng, G.; Liu, Z.; Shuhui, B.; Guo, L.: Weakly supervised learning for target detection in remote sensing images. IEEE Geosci. Remote Sens. Lett. 12(4), 701–705 (2014)

    Article  Google Scholar 

  93. **a, G.-S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L.: Dota: a large-scale dataset for object detection in aerial images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–3983 (2018)

  94. Sheng, X.; Fang, T.; Li, D.; Wang, S.: Object classification of aerial images with bag-of-visual words. IEEE Geosci. Remote Sens. Lett. 7(2), 366–370 (2009)

    Article  Google Scholar 

  95. Han, J.; Zhou, P.; Zhang, D.; Cheng, G.; Guo, L.; Liu, Z.; Shuhui, B.; Jun, W.: Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding. ISPRS J. Photogramm. Remote Sens. 89, 37–48 (2014)

    Article  Google Scholar 

  96. Han, X.; Zhong, Y.; Zhang, L.: An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery. Remote Sens. 9(7), 666 (2017)

    Article  Google Scholar 

  97. Xu, Z.; Xu, X.; Lei, W.; Rui, Y.; Pu, F.: Deformable convnet with aspect ratio constrained NMS for object detection in remote sensing imagery. Remote Sens. 9(12), 1312 (2017)

    Article  Google Scholar 

  98. Zou, Z.; Shi, Z.: Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images. IEEE Trans. Image Process. 27(3), 1100–1111 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  99. Dong, R.; Xu, D.; Zhao, J.; Jiao, L.; An, J.: Sig-nms-based faster r-CNN combining transfer learning for small target detection in vhr optical remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 57(11), 8534–8545 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National University of Technology, Islamabad, Pakistan, and Umm Al-Qura University, Makkah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sultan Daud Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.D., Alarabi, L. & Basalamah, S. A Unified Deep Learning Framework of Multi-scale Detectors for Geo-spatial Object Detection in High-Resolution Satellite Images. Arab J Sci Eng 47, 9489–9504 (2022). https://doi.org/10.1007/s13369-021-06288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06288-x

Keywords

Navigation