Log in

A Review on Advancement in Friction Stir Welding Considering the Tool and Material Parameters

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Welding is a fabrication process where similar or dissimilar materials can be fixed together with or without consideration of exterior heat, pressure, or filler material. For welding, whenever heat is required to fuse the surface, that process is named as fusion welding or else it is named as solid-state welding. In fusion welding, due to intense heating, mechanical behaviour of the parent material is highly influenced and distortion of the surface is very high. To overcome the conventional welding technique and improve the quality of the joint, solid-state welding processes are preferred. Among these welding processes, friction stir welding (FSW) is one of them. This joining method is unique, eco-friendly, and energy effectual which may be adopted for joining both metal and polymer-based materials. FSW uses the nonconsumable tool for fixing the workpiece, producing heat through friction between the tool and the workpiece. The automobile industry, building construction, electrical and electronic packaging, and transportation sector require a hefty amount of polymeric materials, including lightweight, excessive strength, and resistance to corrosion. The structural breakdown or material failure needs immediate repair. The present review paper focused on the joining polymer and polymer or polymer and metal material using the FSW process. Also, an in-depth review is made to improve the welding process by selecting the best tool among the various design structures of the tool probe and shoulder and their material standards. This will help in the formation of stable microstructure and enhanced mechanical strength in the weld zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mishra, R.S.; Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. 50, 1–78 (2005)

    Article  Google Scholar 

  2. Colligan, K.J., Avila S.J.: Friction stir welding. U.S. Patent No. 5,794–835 (1998)

  3. Verma, S.; Misra, J.P.: A critical review of friction stir welding process. DAAAM Int. Sci. Book 249, 266 (2015)

    Google Scholar 

  4. Rai, R.; De, A.; Bhadeshia, H.K.D.H.; DebRoy, T.: Friction stir welding tools. Sci. Technol. Weld. Joining 16(4), 325–342 (2011)

    Article  Google Scholar 

  5. Mahoney, M.W.; Rhodes, C.G.; Flintoff, J.G.; Bingel, W.H.: Properties of friction-stir-welded 7075 T651 aluminum. Metall. Mater. Trans. A 29(7), 1955–1964 (1998)

    Article  Google Scholar 

  6. Murr, L.E.; Liu, G.; McClure, J.C.: Dynamic recrystallization in friction-stir welding of aluminium alloy 1100. J. Mater. Sci. Lett. 16(22), 1801–1803 (1997)

    Article  Google Scholar 

  7. Krishnan, K.N.: On the formation of onion rings in friction stir welds. Mater. Sci. Eng. A 327(2), 246–251 (2002)

    Article  Google Scholar 

  8. Garces, J.M.; Moll, D.J.; Bicerano, J.; Fibiger, R.; McLeod, D.G.: Polymeric nanocomposites for automotive applications. Adv. Mater. 12(23), 1835–1839 (2000)

    Article  Google Scholar 

  9. Trimble, D.; O’Donnell, G.E.; Monaghan, J.: Characterisation of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3. J. Manuf. Process. 17, 141–150 (2015)

    Article  Google Scholar 

  10. Hirasawa, S.; Badarinarayan, H.; Okamoto, K.; Tomimura, T.; Kawanami, T.: Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J. Mater. Process. Technol. 210(11), 1455–1463 (2010)

    Article  Google Scholar 

  11. Dialami, N.; Cervera, M.; Chiumenti, M.: Effect of the tool tilt angle on the heat generation and the material flow in friction stir welding. Metals 9(1), 28 (2019)

    Article  Google Scholar 

  12. Thomas, W.M.; Staines, D.G.; Norris, I.M.; De Frias, R.: Friction stir welding tools and developments. Weld. World 47, 10–17 (2003)

    Article  Google Scholar 

  13. Zhang, Y.N.; Cao, X.; Larose, S.; Wanjara, P.: Review of tools for friction stir welding and processing. Can. Metall. Q. 51(3), 250–261 (2012)

    Article  Google Scholar 

  14. Sorensen, C.D.: Innovative technology applications in FSW of high softening temperature materials. In: Proceedings of 5th International FSW Symposium, 14–16 (2004)

  15. Lumsden, J., Pollock, G., Mahoney, M.: Effect of tool design on stress corrosion resistance of FSW AA 7050-T 7451. In: Friction Stir Welding and Processing III as held at the 2005 TMS Annual Meeting, 19–25 (2005).

  16. Colligan, K.: U.S. Patent No. 6,669,075. U.S. Patent and Trademark Office, (2003)

  17. Thomas, W.M.; Staines, D.G.; Norris, I.M.; De Frias, R.: Friction stir welding tools and developments. Weld. World 47(11), 10–17 (2003)

    Article  Google Scholar 

  18. Colligan, K.J.; Xu, J.; Pickens, J.R.: Welding tool and process parameter effects in friction stir welding of aluminum alloys. In: Friction Stir Welding and Processing II, Warrendale, PA, TMS, pp. 181–190 (2003)

  19. Colligan, K.J.; Pickens, J.R.: Friction stir welding of aluminum using a tapered shoulder tool. In: Friction Stir Welding and Processing III, San Francisco, CA, TMS Annual Meeting, 161–170 (2005)

  20. Sorensen, C. D.: Tool material testing for FSW of high-temperature alloys. In: Proc. of 3rd Int. Symp. on FSW, (2001)

  21. London, B.; Mahoney, M.; Bingel, W.; Calabrese, M.; Bossi, R.H.; Waldron, D.: Material low in friction stir welding monitored with Al–SiC and Al–W composite markers. In: Friction stir welding and processing II, Warrendale, PA, TMS, pp. 3–12 (2003)

  22. Vaze, S.P.; Xu, J.; Ritter, R.J.; Colligan, K.J.; Fisher, J.J., Jr.; Pickens, J.R.: Friction stir processing of aluminum alloy 5083 plate for cold bending. Mater. Sci. Forum 426, 2979–2986 (2003)

    Article  Google Scholar 

  23. Fonda, R.W., Bingert, J.F., Colligan, K.J.: Texture and grain evolutions in a 2195 friction stire weld. No. LA-UR-04–6106, (2004)

  24. Thomas, W.M.; Staines, D.G.; Norris, I.M.; De Frias, R.: Friction stir welding tools and developments. Weld World 47(11–12), 10–17 (2003)

    Article  Google Scholar 

  25. Thomas, W.M.; Johnson, K.I.; Wiesner, C.S.: Friction stir welding–recent developments in tool and process technologies. Adv. Eng. Mater. 5(7), 485–490 (2003)

    Article  Google Scholar 

  26. Elangovan, K.; Balasubramanian, V.: Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. J. Mater. Process. Technol. 200(1–3), 163–175 (2008)

    Article  Google Scholar 

  27. Elangovan, K.; Balasubramanian, V.: Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Mater. Des. 29(2), 362–373 (2008)

    Article  Google Scholar 

  28. Motalleb-Nejad, P.; Saeid, T.; Heidarzadeh, A.; Darzi, K.; Ashjari, M.: Effect of tool pin profile on microstructure and mechanical properties of friction stir welded AZ31B magnesium alloy. Mater. Des. 59, 221–226 (2014)

    Article  Google Scholar 

  29. Ilangovan, M.; Boopathy, S.R.; Balasubramanian, V.: Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061–AA 5086 aluminium alloy joints. Def. Technol. 11(2), 174–218 (2015)

    Article  Google Scholar 

  30. Salari, E.; Jahazi, M.; Khodabandeh, A.; Ghasemi-Nanesa, H.: Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets. Mater. Des. 58, 381–389 (2014)

    Article  Google Scholar 

  31. Ugender, S.; Kumar, A.; Reddy, A.S.: Experimental investigation of tool geometry on mechanical properties of friction stir welding of AA 2014 aluminium alloy. Procedia Mater. Sci. 5, 824–831 (2014)

    Article  Google Scholar 

  32. Bahrami, M.; Givi, M.K.B.; Dehghani, K.; Parvin, N.: On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater. Des. 53, 519–527 (2014)

    Article  Google Scholar 

  33. Kumar, A.; Raju, L.S.: Influence of tool pin profiles on friction stir welding of copper. Mater. Manuf. Process. 27(12), 1414–1418 (2012)

    Article  Google Scholar 

  34. Beygi, R.; Mehrizi, M.Z.; Verdera, D.; Loureiro, A.: Influence of tool geometry on material flow and mechanical properties of friction stir welded Al-Cu bimetals. J. Mater. Process. Technol. 255, 739–748 (2018)

    Article  Google Scholar 

  35. Jata, K.V.; Mahoney, M.W.; Mishra, R.S.; Semiatin, S.L.; Lienert, T.: Friction stir welding and processing II. In: Proceedings of Symposium Sponsored by Sha** and Forming Committee of the Materials Processing & Manufacturing Division of TMS, Warrendale, TMS (2003)

  36. Nandan, R.; DebRoy, T.; Bhadeshia, H.K.D.H.: Recent advances in friction-stir welding–process, weldment structure and properties. Prog. Mater Sci. 53(6), 980–1023 (2008)

    Article  Google Scholar 

  37. Derazkola, H.A.; Simchi, A.: Experimental and thermomechanical analysis of the effect of tool pin profile on the friction stir welding of poly (methyl methacrylate) sheets. J. Manuf. Process. 34, 412–423 (2018)

    Article  Google Scholar 

  38. Eyvazian, A.; Hamouda, A.M.; Aghajani Derazkola, H.; Elyasi, M.: Study on the effects of tool tile angle, offset and plunge depth on friction stir welding of poly (methyl methacrylate) T-joint. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 234(4), 773–787 (2020)

    Article  Google Scholar 

  39. Sadeghian, N.; Givi, M.K.B.: Experimental optimization of the mechanical properties of friction stir welded Acrylonitrile Butadiene Styrene sheets. Mater. Des. 67, 145–153 (2015)

    Article  Google Scholar 

  40. Meyer, S. P., Jaeger, B., Wunderling, C., Zaeh, M. F.: Friction stir welding of glass fiber-reinforced polyamide 6: Analysis of the tensile strength and fiber length distribution of friction stir welded PA6-GF30. In: IOP Conference Series: Materials Science and Engineering, p. 012013 (2019)

  41. Yusof, F.; Miyashita, Y.; Seo, N.; Mutoh, Y.; Moshwan, R.: Utilising friction spot joining for dissimilar joint between aluminium alloy (A5052) and polyethylene terephthalate. Sci. Technol. Weld. Join. 17(7), 544–549 (2012)

    Article  Google Scholar 

  42. Ahmadi, H.; Arab, N.M.; Ghasemi, F.A.: Optimization of process parameters for friction stir lap welding of carbon fibre reinforced thermoplastic composites by Taguchi method. J. Mech. Sci. Technol. 28(1), 279–284 (2014)

    Article  Google Scholar 

  43. Mendes, N.; Loureiro, A.; Martins, C.; Neto, P.; Pires, J.N.: Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater. Des. 58, 457–464 (2014)

    Article  Google Scholar 

  44. Mendes, N.; Loureiro, A.; Martins, C.; Neto, P.; Pires, J.N.: Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. Mater. Des. 64, 81–90 (2014)

    Article  Google Scholar 

  45. Gao, J.; Li, C.; Shilpakar, U.; Shen, Y.: Improvements of mechanical properties in dissimilar joints of HDPE and ABS via carbon nanotubes during friction stir welding process. Mater. Des. 86, 289–296 (2015)

    Article  Google Scholar 

  46. Gao, J.; Li, C.; Shilpakar, U.; Shen, Y.: Microstructure and tensile properties of dissimilar submerged friction stir welds between HDPE and ABS sheets. Int. J. Adv. Manuf. Technol. 87, 919–927 (2016)

    Article  Google Scholar 

  47. Bozkurt, Y.: The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Mater. Des. 35, 440–445 (2012)

    Article  Google Scholar 

  48. Abdel-Gwad, E.; Omar, A.B.; Radwan, A.: loadability of friction stir welded joints of high density polyethylene. Int. J. Tech. Res. Appl. 32, 25–32 (2015)

    Google Scholar 

  49. Squeo, E. A., Bruno, G., Guglielmotti, A., Quadrini, F.: Friction stir welding of polyethylene sheets. The Annals of DUNANjREA DE JOS University of Galati Fascicle V. Technologies in Machine Building, pp. 1221–4566 (2009)

  50. Saeedy, S.; Givi, M.B.: Investigation of the effects of critical process parameters of friction stir welding of polyethylene. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225(8), 1305–1310 (2011)

    Article  Google Scholar 

  51. Miloud, M.H.; El Bahri, O.C.; Abdallah, L.: Mechanical behavior analysis of a Friction Stir Welding (FSW) for welded joint applied to polymer materials. Frattura ed Integrità Strutturale 13(47), 459–467 (2019)

    Google Scholar 

  52. Arici, A.; Sinmazçelýk, T.: Effects of double passes of the tool on friction stir welding of polyethylene. J. Mater. Sci. 40(12), 3313–3316 (2005)

    Article  Google Scholar 

  53. Kiss, Z.; Czigany, T.: Microscopic analysis of the morphology of seams in friction stir welded polypropylene. Express Polym. Lett. 6(1), 54–62 (2012)

    Article  Google Scholar 

  54. Husain, I.M.; Salim, R.K.; Azdast, T.; Hasanifard, S.; Shishavan, S.M.; Lee, R.E.: Mechanical properties of friction-stir-welded polyamide sheets. Int. J. Mech. Mater. Eng. 10(1), 18 (2015)

    Article  Google Scholar 

  55. Laieghi, H.; Alipour, S.; Mostafapour, A.: Heat-assisted friction stir welding of polymeric nanocomposite. Sci. Technol. Weld. Join. 25(1), 56–65 (2020)

    Article  Google Scholar 

  56. Laieghi, H.; Alipour, S.; Mostafapour, A.: Investigation of the mechanical properties of friction stir welded PA6-based polymer nanocomposite and optimizing experimental conditions. Mater. Res. Express 6(6), 065018 (2019)

    Article  Google Scholar 

  57. Kiss, Z.; Czigany, T.: Effect of welding parameters on the heat affected zone and the mechanical properties of friction stir welded poly (ethylene-terephthalate-glycol). J. Appl. Polym. Sci. 125(3), 2231–2238 (2012)

    Article  Google Scholar 

  58. Eslami, S.; Ramos, T.; Tavares, P.J.; Moreira, P.M.G.P.: Effect of friction stir welding parameters with newly developed tool for lap joint of dissimilar polymers. Procedia Eng. 114, 199–207 (2015)

    Article  Google Scholar 

  59. Hoseinlaghab, S.; Mirjavadi, S.S.; Sadeghian, N.; Jalili, I.; Azarbarmas, M.; Givi, M.K.B.: Influences of welding parameters on the quality and creep properties of friction stir welded polyethylene plates. Mater. Des. 67, 369–378 (2015)

    Article  Google Scholar 

  60. Simoes, F.; Rodrigues, D.M.: Material flow and thermo-mechanical conditions during friction stir welding of polymers: literature review, experimental results and empirical analysis. Mater. Des. 59, 344–351 (2014)

    Article  Google Scholar 

  61. Sharma, A.K.R.; Choudhury, M.R.; Debnath, K.: Experimental investigation of friction stir welding of PLA. Weld. World 64, 1011–1021 (2020)

    Article  Google Scholar 

  62. Lambiase, F.; Paoletti, A.; Grossi, V.; Di Ilio, A.: Friction assisted joining of aluminum and PVC sheets. J. Manuf. Process. 29, 221–231 (2017)

    Article  Google Scholar 

  63. Lambiase, F.; Paoletti, A.: Mechanical behavior of AA5053/polyetheretherketone (PEEK) made by friction assisted joining. Compos. Struct. 189, 70–78 (2018)

    Article  Google Scholar 

  64. Khodabakhshi, F.; Haghshenas, M.; Chen, J.; Shalchi Amirkhiz, B.; Li, J.; Gerlich, A.P.: Bonding mechanism and interface characterisation during dissimilar friction stir welding of an aluminium/polymer bi-material joint. Sci. Technol. Weld. Joining 22(3), 182–190 (2017)

    Article  Google Scholar 

  65. Mostafapour, A.; Azarsa, E.: A study on the role of processing parameters in joining polyethylene sheets via heat assisted friction stir welding: Investigating microstructure, tensile and flexural properties. Int. J. Phys. Sci. 7(4), 647–654 (2012)

    Google Scholar 

  66. Adibeig, M.R.; Marami, G.; Saeimi-Sadigh, M.A.; da Silva, L.F.M.: Experimental and numerical study of polyethylene hybrid joints: Friction stir spot welded joints reinforced with adhesive. Int. J. Adhes. Adhes. 98, 102555 (2020)

    Article  Google Scholar 

  67. Azarsa, E.; Mostafapour, A.: Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets. J. Manuf. Process. 16(1), 149–155 (2014)

    Article  Google Scholar 

  68. Mustapha, K.; Abdessamad, B.; Azzeddine, B.; Mokhtar, Z.: Experimental Investigation of Friction Stir Welding Process on High-Density Polyethylene. J. Fail. Anal. Prev. 20(2), 590–596 (2020)

    Article  Google Scholar 

  69. Gao, J.; Shen, Y.; Zhang, J.; Xu, H.: Submerged friction stir weld of polyethylene sheets. J. Appl. Polym. Sci. 131(22), 1–8 (2014)

    Article  Google Scholar 

  70. Nakhaei, M.R.; Naderi, G.; Mostafapour, A.: Effect of processing parameters on morphology and tensile properties of PP/EPDM/organoclay nanocomposites fabricated by friction stir processing. Iran. Polym. J. 25(2), 179–191 (2016)

    Article  Google Scholar 

  71. Lambiase, F.; Grossi, V.; Paoletti, A.: Advanced mechanical characterization of friction stir welds made on polycarbonate. Int. J. Adv. Manuf. Technol. 104(5), 2089–2102 (2019)

    Article  Google Scholar 

  72. Panneerselvam, K.; Lenin, K.: Joining of Nylon 6 plate by friction stir welding process using threaded pin profile. Mater. Des. 53, 302–307 (2014)

    Article  Google Scholar 

  73. Kiss, Z.; Czigany, T.: Applicability of friction stir welding in polymeric materials. Periodica Polytech. Mech. Eng. 51(1), 15–18 (2007)

    Article  Google Scholar 

  74. Rezgui, M.A.; Ayadi, M.; Cherouat, A.; Hamrouni, K.; Zghal, A.; Bejaoui, S.: Application of Taguchi approach to optimize friction stir welding parameters of polyethylene. EPJ Web Of Conf. 6, 07003 (2010)

    Article  Google Scholar 

  75. Eslami, S.; Ramos, T.; Tavares, P.J.; Moreira, P.M.G.P.: Shoulder design develop- ments for FSW lap joints of dissimilar polymers. J. Manuf. Process. 20, 15–23 (2015)

    Article  Google Scholar 

  76. Kumar, S.; Roy, B.S.: Novel study of joining of acrylonitrile butadiene styrene and polycarbonate plate by using friction stir welding with the double-step shoulder. J Manuf. Process. 45, 322–330 (2019)

    Article  Google Scholar 

  77. Bagheri, A.; Azdast, T.; Doniavi, A.: An experimental study on mechanical properties of friction stir welded ABS sheets. Mater. Des. 43, 402–409 (2013)

    Article  Google Scholar 

  78. Sahu, S.K.; Pal, K.; Mahto, R.P.; Dash, P.: Monitoring of friction stir welding for dissimilar Al 6063 alloy to polypropylene using sensor signals. Int. J. Adv. Manuf. Technol. 104(1), 159–177 (2019)

    Article  Google Scholar 

  79. Singh, S.; Singh, G.; Prakash, C.; Kumar, R.: On the mechanical characteristics of friction stir welded dissimilar polymers: statistical analysis of the processing parameters and morphological investigations of the weld joint. J. Braz. Soc. Mech. Sci. Eng. 42(4), 1–12 (2020)

    Article  Google Scholar 

  80. Elyasi, M.; Derazkola, H.A.: Experimental and thermomechanical study on FSW of PMMA polymer T-joint. Int. J. Adv. Manuf. Technol. 97(1–4), 1445–1456 (2018)

    Article  Google Scholar 

  81. Derazkola, H.A.; Simchi, A.; Lambiase, F.: Friction stir welding of polycarbonate lap joints: relationship between processing parameters and mechanical properties. Polym. Testing 79, 105999 (2019)

    Article  Google Scholar 

  82. Nandhini, R.; Kumar, R.D.; Muthukumaran, S.; Kumaran, S.: Analysis of mechanical and crystalline characteristics of polyamide 66 joints welded by a novel friction stir welding. Arab. J. Sci. Eng. 44(9), 7399–7405 (2019)

    Article  Google Scholar 

  83. Ravi, N.; Shanmugam, M.; Bheemappa, S.; Gowripalan, N.: Influence of reinforcement on tribological properties of friction stir welded glass fiber reinforced polyamide 66. J. Manuf. Process. 58, 1052–1063 (2020)

    Article  Google Scholar 

  84. Vijendra, B.; Sharma, A.: Induction heated tool assisted friction-stir welding (i-FSW): A novel hybrid process for joining of thermoplastics. J. Manuf. Process. 20, 234–244 (2015)

    Article  Google Scholar 

  85. Derazkola, H.A.; Simchi, A.: Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly (methyl methacrylate)-based nanocomposites prepared by friction stir processing. J. Mech. Behav. Biomed. Mater. 79, 246–253 (2018)

    Article  Google Scholar 

  86. Derazkola, H.A.; Eyvazian, A.; Simchi, A.: Modeling and experimental validation of material flow during FSW of polycarbonate. Mater. Today Commun. 22, 100796 (2020)

    Article  Google Scholar 

  87. Derazkola, H.A.; Simchi, A.: An investigation on the dissimilar friction stir welding of T-joints between AA5754 aluminum alloy and poly (methyl methacrylate). Thin-Walled Struct. 135, 376–384 (2019)

    Article  Google Scholar 

  88. Babu, S.R.; Hudgikar, S.R.K.; Sekhar, Y.P.: Experimental investigation on friction stir welding of HDPE reinforced with SiC and Al and Taguchi- based optimization. Adv. Appl. Mech. Eng. pp. 929–939 (2020)

  89. Huang, Y.; Meng, X.; **e, Y.; Li, J.; Wan, L.: Joining of carbon fiber reinforced thermoplastic and metal via friction stir welding with co-controlling shape and performance. Compos. A Appl. Sci. Manuf. 112, 328–336 (2018)

    Article  Google Scholar 

  90. Moshwan, R.; Rahmat, S.M.; Yusof, F.; Hassan, M.A.; Hamdi, M.; Fadzil, M.: Dissimilar friction stir welding between polycarbonate and AA 7075 aluminum alloy. Int. J. Mater. Res. 106(3), 258–266 (2015)

    Article  Google Scholar 

  91. Ratanathavorn, W.; Melander, A.: Dissimilar joining between aluminium alloy (AA 6111) and thermoplastics using friction stir welding. Sci. Technol. Weld. Join. 20(3), 222–228 (2015)

    Article  Google Scholar 

  92. Khodabakhshi, F.; Haghshenas, M.; Sahraeinejad, S.; Chen, J.; Shalchi, B.; Li, J.; Gerlich, A.P.: Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high density polyethylene. Mater. Charact. 98, 73–82 (2014)

    Article  Google Scholar 

  93. Yan, Y.; Shen, Y.; Lei, H.; Zhuang, J.; Li, J.: Friction lap welding AA6061 alloy and GFR nylon: Influence of welding parameters and groove features on joint morphology and mechanical property. J. Mater. Process. Technol. 278, 116458 (2020)

    Article  Google Scholar 

  94. Nagatsuka, K.; Yoshida, S.; Tsuchiya, A.; Nakata, K.: Direct joining of carbon-fiber–reinforced plastic to an aluminum alloy using friction lap joining. Compos. B Eng. 73, 82–88 (2015)

    Article  Google Scholar 

  95. Mishra, R.S.; Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. 50(1–2), 1–78 (2005)

    Article  Google Scholar 

  96. Aydin, M.: Effects of welding parameters and pre-heating on the friction stir welding of UHMW-polyethylene. Polymer-Plastics Technol. Eng. 49(6), 595–601 (2010)

    Article  Google Scholar 

  97. Ahmadi, H.; Arab, N.M.; Ghasemi, F.A.; Farsani, R.E.: Influence of pin profile on quality of friction stir lap welds in carbon fiber reinforced polypropylene composite. Int. J. Mech. Appl. 2(3), 24–28 (2012)

    Google Scholar 

  98. Rahmat, S.M.; Hamdi, M.; Yusof, F.; Moshwan, R.: Preliminary study on the feasibility of friction stir welding in 7075 aluminum alloy and polycarbonate sheet. Mater. Res. Innov. 18, S6-515 (2014)

    Article  Google Scholar 

  99. Pirizadeh, M.; Azdast, T.; Ahmadi, S.R.; Shishavan, S.M.; Bagheri, A.: Friction stir welding of thermoplastics using a newly designed tool. Mater. Des. 54, 342–347 (2014)

    Article  Google Scholar 

  100. Panneerselvam, K.; Lenin, K.: Effects and defects of the polypropylene plate for different parameters in friction stir welding process. Taper 40, 1500 (2013)

    Google Scholar 

  101. Payganeh, G.H.; Arab, N.M.; Asl, Y.D.; Ghasemi, F.A.; Boroujeni, M.S.: Effects of friction stir welding process parameters on appearance and strength of polypropylene composite welds. Int. J. Phys. Sci. 6(19), 4595–4601 (2011)

    Google Scholar 

  102. Kurtulmus, M.: Friction stir spot welding parameters for polypropylene sheets. Sci. Res. Essays 7(8), 947–956 (2012)

    Google Scholar 

  103. Bilici, M.K.: Effect of tool geometry on friction stir spot welding of polypropylene sheets. Express Polym. Lett. 6(10), 805–813 (2012)

    Article  Google Scholar 

  104. Bilici, M.K.; Yükler, A.I.: Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets. Mater. Des. 33, 145–152 (2012)

    Article  Google Scholar 

  105. Yan, Y.; Shen, Y.; Zhang, W.; Guan, W.: Effects of friction stir spot welding parameters on morphology and mechanical property of modified cast nylon 6 joints produced by double-pin tool. Int. J. Adv. Manuf. Technol. 92(5–8), 2511–2523 (2017)

    Article  Google Scholar 

  106. Paoletti, A.; Lambiase, F.; Di Ilio, A.: Analysis of forces and temperatures in friction spot stir welding of thermoplastic polymers. Int. J. Adv. Manuf. Technol. 83(5–8), 1395–1407 (2016)

    Article  Google Scholar 

  107. Lambiase, F.; Paoletti, A.; Di Ilio, A.: Friction spot stir welding of polymers: control of plunging force. Int. J. Adv. Manuf. Technol. 90(9–12), 2827–2837 (2017)

    Article  Google Scholar 

  108. Dashatan, S.H.; Azdast, T.; Ahmadi, S.R.; Bagheri, A.: Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets. Mater. Des. 45, 135–141 (2013)

    Article  Google Scholar 

  109. Yan, Y.; Shen, Y.; Lei, H.; Zhuang, J.: Influence of welding parameters and tool geometry on the morphology and mechanical performance of ABS friction stir spot welds. Int. J. Adv. Manuf. Technol. 103(5), 2319–2330 (2019)

    Article  Google Scholar 

  110. Bilici, M.K.; Yukler, A.I.; Kurtulmuş, M.: The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mater. Des. 32(7), 4074–4079 (2011)

    Article  Google Scholar 

  111. **e, Y.; Huang, Y.; Meng, X.; Li, J.; Cao, J.: Friction stir spot welding of aluminum and wood with polymer intermediate layers. Constr. Build. Mater. 240, 117952 (2020)

    Article  Google Scholar 

  112. Aliasghari, S.; Ghorbani, M.; Skeldon, P.; Karami, H.; Movahedi, M.: Effect of plasma electrolytic oxidation on joining of AA 5052 aluminium alloy to polypropylene using friction stir spot welding. Surf. Coat. Technol. 313, 274–281 (2017)

    Article  Google Scholar 

  113. Vibin, R., Jaisingh, S. J., Ramesh, G., Jayabalakrishnan, D., Arunprakash, V. R..: Effect of Nanosilica and Weave Geometry on Weld Properties of Friction Stir Welded Nylon 6–6 Thick Plates. Silicon, 1–9 (2020)

  114. Schilling, C., dos Santos, J.: Method and device for joining at least two adjoining work pieces by friction welding. U.S. Patent No. 6,722,556 (2004)

  115. Andre, N.M.; Goushegir, S.M.; Dos Santos, J.F.; Canto, L.B.; Amancio-Filho, S.T.: Friction Spot Joining of aluminum alloy 2024–T3 and carbon-fiber-reinforced poly (phenylene sulfide) laminate with additional PPS film interlayer: Microstructure, mechanical strength and failure mechanisms. Compos. B Eng. 94, 197–208 (2016)

    Article  Google Scholar 

  116. Pabandi, H.K.; Movahedi, M.; Kokabi, A.H.: A new refill friction spot welding process for aluminum/polymer composite hybrid structures. Compos. Struct. 174, 59–69 (2017)

    Article  Google Scholar 

  117. Huang, Y.; Meng, X.; **e, Y.; Lv, Z.; Wan, L.; Cao, J.; Feng, J.: Friction spot welding of carbon fiber-reinforced polyetherimide laminate. Compos. Struct. 189, 627–634 (2018)

    Article  Google Scholar 

  118. Junior, W.S.; Handge, U.A.; dos Santos, J.F.; Abetz, V.; Amancio-Filho, S.T.: Feasibility study of friction spot welding of dissimilar single-lap joint between poly (methyl methacrylate) and poly (methyl methacrylate)-SiO2 nanocomposite. Mater. Des. 64, 246–250 (2014)

    Article  Google Scholar 

  119. Jiang, M.; Chen, K.; Chen, B.; Wang, M.; Hua, X.; Zhang, L.; Shan, A.: Friction spot joining of TC4 alloy and ultra-high molecular weight polyethylene: Focused on temperature-force relationship. Mater. Des. 188, 108419 (2020)

    Article  Google Scholar 

  120. Junior, W.S.; Emmler, T.; Abetz, C.; Handge, U.A.; dos Santos, J.F.; Amancio-Filho, S.T.; Abetz, V.: Friction spot welding of PMMA with PMMA/silica and PMMA/silica-g-PMMA nanocomposites functionalized via ATRP. Polymer 55(20), 5146–5159 (2014)

    Article  Google Scholar 

  121. Oliveira, P.H.F.; Amancio-Filho, S.T.; Dos Santos, J.F.; Hage, E., Jr.: Preliminary study on the feasibility of friction spot welding in PMMA. Mater. Lett. 64(19), 2098–2101 (2010)

    Article  Google Scholar 

  122. Masooth, P.; Syeddu, H.; Jayakumar, V.: Experimental investigation on surface finish of drilled hole by TiAlN, TiN, AlCrN coated HSS drill under dry conditions. Mater. Today Proc. 22, 315–321 (2020)

    Article  Google Scholar 

  123. Xu, J.; Ji, M.; Davim, J.P.; Chen, M.; El Mansori, M.; Krishnaraj, V.: Comparative study of minimum quantity lubrication and dry drilling of CFRP/titanium stacks using TiAlN and diamond coated drills. Compos. Struct. 234, 111727 (2020)

    Article  Google Scholar 

  124. Piri, M.; Hashemolhosseini, H.; Mikaeil, R.; Ataei, M.; Baghbanan, A.: Investigation of wear resistance of drill bits with WC, Diamond-DLC, and TiAlSi coatings with respect to mechanical properties of rock. Int. J. Refract Metal Hard Mater. 87, 105113 (2020)

    Article  Google Scholar 

  125. Kao, J.Y.; Hsu, C.Y.; Tsao, C.C.: Experimental study of inverted drilling Al-7075 alloy. Int. J. Adv. Manuf. Technol. 102(9–12), 3519–3529 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhowmik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahakur, V.K., Gouda, K., Patowari, P.K. et al. A Review on Advancement in Friction Stir Welding Considering the Tool and Material Parameters. Arab J Sci Eng 46, 7681–7697 (2021). https://doi.org/10.1007/s13369-021-05524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05524-8

Keywords

Navigation