Log in

A New Fusion of ASO with SA Algorithm and Its Applications to MLP Training and DC Motor Speed Control

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An improved version of atom search optimization (ASO) algorithm is proposed in this paper. The search capability of ASO was improved by using simulated annealing (SA) algorithm as an embedded part of it. The proposed hybrid algorithm was named as hASO-SA and used for optimizing nonlinear and linearized problems such as training multilayer perceptron (MLP) and proportional-integral-derivative controller design for DC motor speed regulation as well as testing benchmark functions of unimodal, multimodal, hybrid and composition types. The obtained results on classical and CEC2014 benchmark functions were compared with other metaheuristic algorithms, including two other SA-based hybrid versions, which showed the greater capability of the proposed approach. In addition, nonparametric statistical test was performed for further verification of the superior performance of hASO-SA. In terms of MLP training, several datasets were used and the obtained results were compared with respective competitive algorithms. The results clearly indicated the performance of the proposed algorithm to be better. For the case of controller design, the performance evaluation was performed by comparing it with the recent studies adopting the same controller parameters and limits as well as objective function. The transient, frequency and robustness analysis demonstrated the superior ability of the proposed approach. In brief, the comparative analyses indicated the proposed algorithm to be successful for optimization problems with different nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rao, S.S.; Desai, R.C.: Optimization theory and applications. IEEE Trans. Syst. Man Cybern. 10, 280 (1980). https://doi.org/10.1109/TSMC.1980.4308490

    Article  Google Scholar 

  2. Uryasev, S.; Pardalos, P.M.: Stochastic Optimization: Algorithms and Applications. Springer, Berlin (2013)

    Google Scholar 

  3. Antoniou, A.; Lu, W.S.: Practical Optimization: Algorithms and Engineering Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.: Harris Hawks Optimization: Algorithm and Applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019). https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  5. Singh, N.; Son, L.H.; Chiclana, F.; Magnot, J.P.: A new fusion of salp swarm with sine cosine for optimization of non-linear functions. Eng. Comput. 36, 185–212 (2020). https://doi.org/10.1007/s00366-018-00696-8

    Article  Google Scholar 

  6. Mohammed, H.; Rashid, T.: A novel hybrid GWO with WOA for global numerical optimization and solving pressure vessel design. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04823-9

    Article  Google Scholar 

  7. Das, P.K.: Hybridization of kidney-inspired and sine-cosine algorithm for multi-robot path planning. Arab. J. Sci. Eng. 45, 2883–2900 (2020). https://doi.org/10.1007/s13369-019-04193-y

    Article  Google Scholar 

  8. Zhang, Z.; Ding, S.; Jia, W.: A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Eng. Appl. Artif. Intell. 85, 254–268 (2019). https://doi.org/10.1016/j.engappai.2019.06.017

    Article  Google Scholar 

  9. Zhao, W.; Zhang, Z.; Wang, L.: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 87, 103300 (2020). https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

  10. Hasançebi, O.; Erbatur, F.: Constraint handling in genetic algorithm integrated structural optimization. Acta Mech. 139–145, 15–31 (2000). https://doi.org/10.1007/bf01170179

    Article  MATH  Google Scholar 

  11. Jordehi, A.R.: A review on constraint handling strategies in particle swarm optimisation. Neural Comput. Appl. 26, 1265–1275 (2015). https://doi.org/10.1007/s00521-014-1808-5

    Article  Google Scholar 

  12. Jain, M.; Singh, V.; Rani, A.: A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019). https://doi.org/10.1016/j.swevo.2018.02.013

    Article  Google Scholar 

  13. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  14. Zhao, W.; Wang, L.; Zhang, Z.: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Comput. Appl. 32, 9383–9425 (2020). https://doi.org/10.1007/s00521-019-04452-x

    Article  Google Scholar 

  15. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S.: Slime mould algorithm: a new method for stochastic optimization. Futur. Gener. Comput. Syst. 111, 300–323 (2020). https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  16. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S.: Henry gas solubility optimization: a novel physics-based algorithm. Futur. Gener. Comput. Syst. 101, 646–667 (2019). https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  17. Arora, S.; Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23, 715–734 (2019). https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  18. Cheng, M.Y.; Prayogo, D.: Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput. Struct. 139, 98–112 (2014). https://doi.org/10.1016/j.compstruc.2014.03.007

    Article  Google Scholar 

  19. Karaboga, D.; Akay, B.: A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 214, 108–132 (2009). https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  MATH  Google Scholar 

  20. Harifi, S.; Khalilian, M.; Mohammadzadeh, J.; Ebrahimnejad, S.: Emperor Penguins Colony: a new metaheuristic algorithm for optimization. Evol. Intell. 12, 211–226 (2019). https://doi.org/10.1007/s12065-019-00212-x

    Article  Google Scholar 

  21. Mirjalili, S.: SCA: a Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016). https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  22. Jaddi, N.S.; Alvankarian, J.; Abdullah, S.: Kidney-inspired algorithm for optimization problems. Commun. Nonlinear Sci. Numer. Simul. 42, 358–369 (2017). https://doi.org/10.1016/j.cnsns.2016.06.006

    Article  MATH  Google Scholar 

  23. Wolpert, D.H.; Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  24. Zhao, W.; Wang, L.; Zhang, Z.: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl. Based Syst. 163, 283–304 (2019). https://doi.org/10.1016/j.knosys.2018.08.030

    Article  Google Scholar 

  25. Zhao, W.; Wang, L.; Zhang, Z.: A novel atom search optimization for dispersion coefficient estimation in groundwater. Futur. Gener. Comput. Syst. 91, 601–610 (2019). https://doi.org/10.1016/j.future.2018.05.037

    Article  Google Scholar 

  26. Too, J.; Abdullah, A.R.: Chaotic atom search optimization for feature selection. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04486-7

    Article  Google Scholar 

  27. Too, J.; Rahim Abdullah, A.: Binary atom search optimisation approaches for feature selection. Conn. Sci. (2020). https://doi.org/10.1080/09540091.2020.1741515

    Article  Google Scholar 

  28. Pham, M.H.; Do, T.H.; Pham, V.M.; Bui, Q.T.: Mangrove forest classification and aboveground biomass estimation using an atom search algorithm and adaptive neuro-fuzzy inference system. PLoS ONE 15, e0233110 (2020). https://doi.org/10.1371/journal.pone.0233110

    Article  Google Scholar 

  29. Yang, B.; Zhang, M.; Zhang, X.; Wang, J.; Shu, H.; Li, S.; He, T.; Yang, L.; Yu, T.: Fast atom search optimization based MPPT design of centralized thermoelectric generation system under heterogeneous temperature difference. J. Clean. Prod. 248, 119301 (2020). https://doi.org/10.1016/j.jclepro.2019.119301

    Article  Google Scholar 

  30. Almagboul, M.A.; Shu, F.; Qian, Y.; Zhou, X.; Wang, J.; Hu, J.: Atom search optimization algorithm based hybrid antenna array receive beamforming to control sidelobe level and steering the null. AEU Int. J. Electron. Commun. 111, 152854 (2019). https://doi.org/10.1016/j.aeue.2019.152854

    Article  Google Scholar 

  31. Ekinci, S.; Demiroren, A.; Zeynelgil, H.; Hekimoğlu, B.: An opposition-based atom search optimization algorithm for automatic voltage regulator system. J. Fac. Eng. Archit. Gazi Univ. 35, 1141–1158 (2020). https://doi.org/10.17341/gazimmfd.598576

    Article  Google Scholar 

  32. Abdel-Rahim, A.M.M.; Shaaban, S.A.; Raglend, I.J.: Optimal Power Flow Using Atom Search Optimization. In: 2019 Innovations in Power and Advanced Computing Technologies, i-PACT 2019. pp. 1–4. IEEE (2019)

  33. Diab, A.A.Z.; Ebraheem, T.; Aljendy, R.; Sultan, H.M.; Ali, Z.M.: Optimal design and control of MMC STATCOM for improving power quality indicators. Appl. Sci. 10, 2490 (2020). https://doi.org/10.3390/app10072490

    Article  Google Scholar 

  34. Agwa, A.M.; El-Fergany, A.A.; Sarhan, G.M.: Steady-state modeling of fuel cells based on atom search optimizer. Energies. 12, 1884 (2019). https://doi.org/10.3390/en12101884

    Article  Google Scholar 

  35. Rizk-Allah, R.M.; Hassanien, A.E.; Oliva, D.: An enhanced sitting–sizing scheme for shunt capacitors in radial distribution systems using improved atom search optimization. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04799-6

    Article  Google Scholar 

  36. Farnad, B.; Jafarian, A.; Baleanu, D.: A new hybrid algorithm for continuous optimization problem. Appl. Math. Model. 55, 652–673 (2018). https://doi.org/10.1016/j.apm.2017.10.001

    Article  MathSciNet  MATH  Google Scholar 

  37. Mafarja, M.M.; Mirjalili, S.: Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing. 260, 302–312 (2017). https://doi.org/10.1016/j.neucom.2017.04.053

    Article  Google Scholar 

  38. Sun, P.; Zhang, Y.; Liu, J.; Bi, J.: An improved atom search optimization with cellular automata, a Lévy flight and an adaptive weight strategy. IEEE Access. 8, 49137–49159 (2020). https://doi.org/10.1109/ACCESS.2020.2979921

    Article  Google Scholar 

  39. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983). https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  40. Nayak, J.R.; Shaw, B.; Sahu, B.K.: Implementation of hybrid SSA-SA based three-degree-of-freedom fractional-order PID controller for AGC of a two-area power system integrated with small hydro plants. IET Gener. Transm. Distrib. 14, 2430–2440 (2020). https://doi.org/10.1049/iet-gtd.2019.0113

    Article  Google Scholar 

  41. Attiya, I.; Abd Elaziz, M.; **ong, S.: Job scheduling in cloud computing using a modified Harris Hawks optimization and simulated annealing algorithm. Comput. Intell. Neurosci. (2020). https://doi.org/10.1155/2020/3504642

    Article  Google Scholar 

  42. Jouhari, H.; Lei, D.; Al-qaness, M.A.A.; Elaziz, M.A.; Ewees, A.A.; Farouk, O.: Sine-cosine algorithm to enhance simulated annealing for unrelated parallel machine scheduling with setup times. Mathematics. 7, 1120 (2019). https://doi.org/10.3390/math7111120

    Article  Google Scholar 

  43. Pan, X.; Xue, L.; Lu, Y.; Sun, N.: Hybrid particle swarm optimization with simulated annealing. Multimed. Tools Appl. 78, 29921–29936 (2019). https://doi.org/10.1007/s11042-018-6602-4

    Article  Google Scholar 

  44. Shang, Y.; Fan, Q.; Shang, L.; Sun, Z.; **ao, G.: Modified genetic algorithm with simulated annealing applied to optimal load dispatch of the Three Gorges Hydropower Plant in China. Hydrol. Sci. J. 64, 1129–1139 (2019). https://doi.org/10.1080/02626667.2019.1625052

    Article  Google Scholar 

  45. Kurtuluş, E.; Yıldız, A.R.; Sait, S.M.; Bureerat, S.: A novel hybrid Harris hawks-simulated annealing algorithm and RBF-based metamodel for design optimization of highway guardrails. Mater. Test. 62, 251–260 (2020). https://doi.org/10.3139/120.111478

    Article  Google Scholar 

  46. Yu, C.; Heidari, A.A.; Chen, H.: A quantum-behaved simulated annealing algorithm-based moth-flame optimization method. Appl. Math. Model. 87, 1–19 (2020). https://doi.org/10.1016/j.apm.2020.04.019

    Article  MathSciNet  Google Scholar 

  47. Shahidul Islam, M.; Rafiqul Islam, M.: A hybrid framework based on genetic algorithm and simulated annealing for RNA structure prediction with pseudoknots. J. King Saud Univ. Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.03.005

    Article  Google Scholar 

  48. Tavakoli, A.: Multi-criteria optimization of multi product assembly line using hybrid Tabu-SA algorithm. SN Appl. Sci. 2, 151 (2020). https://doi.org/10.1007/s42452-019-1863-8

    Article  Google Scholar 

  49. Al-Rawashdeh, G.; Mamat, R.; Hafhizah Binti Abd Rahim, N.: Hybrid water cycle optimization algorithm with simulated annealing for spam E-mail detection. IEEE Access. 7, 143721–143734 (2019). https://doi.org/10.1109/ACCESS.2019.2944089

    Article  Google Scholar 

  50. Selim, S.Z.; Alsultan, K.: A simulated annealing algorithm for the clustering problem. Pattern Recognit. 24, 1003–1008 (1991). https://doi.org/10.1016/0031-3203(91)90097-O

    Article  MathSciNet  Google Scholar 

  51. Elmi, A.; Solimanpur, M.; Topaloglu, S.; Elmi, A.: A simulated annealing algorithm for the job shop cell scheduling problem with intercellular moves and reentrant parts. Comput. Ind. Eng. 61, 171–178 (2011). https://doi.org/10.1016/j.cie.2011.03.007

    Article  Google Scholar 

  52. Wu, Y.; Tang, M.; Fraser, W.: A simulated annealing algorithm for energy efficient virtual machine placement. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC). pp. 1245–1250 (2012)

  53. El-Naggar, K.M.; AlRashidi, M.R.; AlHajri, M.F.; Al-Othman, A.K.: Simulated annealing algorithm for photovoltaic parameters identification. Sol. Energy 86, 266–274 (2012). https://doi.org/10.1016/j.solener.2011.09.032

    Article  Google Scholar 

  54. Wang, Y.; Bu, G.; Wang, Y.; Zhao, T.; Zhang, Z.; Zhu, Z.: Application of a simulated annealing algorithm to design and optimize a pressure-swing distillation process. Comput. Chem. Eng. 95, 97–107 (2016). https://doi.org/10.1016/j.compchemeng.2016.09.014

    Article  Google Scholar 

  55. Ziane, I.; Benhamida, F.; Graa, A.: Simulated annealing algorithm for combined economic and emission power dispatch using max/max price penalty factor. Neural Comput. Appl. 28, 197–205 (2017). https://doi.org/10.1007/s00521-016-2335-3

    Article  Google Scholar 

  56. Karagul, K.; Sahin, Y.; Aydemir, E.; Oral, A.: A Simulated Annealing Algorithm Based Solution Method for a Green Vehicle Routing Problem with Fuel Consumption BT—Lean and Green Supply Chain Management: Optimization Models and Algorithms. Presented at the (2019)

  57. Tang, S.; Peng, M.; **a, G.; Wang, G.; Zhou, C.: Optimization design for supercritical carbon dioxide compressor based on simulated annealing algorithm. Ann. Nucl. Energy 140, 107107 (2020). https://doi.org/10.1016/j.anucene.2019.107107

    Article  Google Scholar 

  58. Hasançebi, O.; Çarbaş, S.; Saka, M.P.: Improving the performance of simulated annealing in structural optimization. Struct. Multidiscip. Optim. 41, 189–203 (2010). https://doi.org/10.1007/s00158-009-0418-9

    Article  Google Scholar 

  59. Hasançebi, O.; Çarbaş, S.; Doğan, E.; Erdal, F.; Saka, M.P.: Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures. Comput. Struct. 87, 284–302 (2009). https://doi.org/10.1016/j.compstruc.2009.01.002

    Article  Google Scholar 

  60. Hasançebi, O.; Çarbaş, S.; Doğan, E.; Erdal, F.; Saka, M.P.: Comparison of non-deterministic search techniques in the optimum design of real size steel frames. Comput. Struct. 88, 1033–1048 (2010). https://doi.org/10.1016/j.compstruc.2010.06.006

    Article  Google Scholar 

  61. Hasançebi, O.; Doğan, E.: Optimizing single-span steel truss bridges with simulated annealing. Asian J. Civ. Eng. (Build. Hous.) 11, 763–775 (2010)

    Google Scholar 

  62. Javidrad, F.; Nazari, M.: A new hybrid particle swarm and simulated annealing stochastic optimization method. Appl. Soft Comput. J. 60, 634–654 (2017). https://doi.org/10.1016/j.asoc.2017.07.023

    Article  Google Scholar 

  63. Alkhateeb, F.; Abed-Alguni, B.H.: A hybrid cuckoo search and simulated annealing algorithm. J. Intell. Syst. 28, 683–698 (2017). https://doi.org/10.1515/jisys-2017-0268

    Article  Google Scholar 

  64. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. (Ny) 179, 2232–2248 (2009). https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  65. Liang, J.J.; Qu, B.Y.; Suganthan, P.N.: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session on Single Objective Real-Parameter Numerical Optimization. Technical Report 201311, Comput. Intell. Lab. Zhengzhou Univ. Nanyang Technol. Univ. 635, (2013)

  66. Woolson, R.F.: Wilcoxon signed-rank test. In: D'Agostino, R.B., Sullivan, L., Massaro, J. (eds.) Wiley Encyclopedia of Clinical Trials (2008). https://doi.org/10.1002/9780471462422.eoct979

  67. Blake, C.L.; Merz, C.J.: UCI Repository of machine learning databases. http://archive.ics.uci.edu/ml/

  68. Bansal, P.; Kumar, S.; Pasrija, S.; Singh, S.: A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and optimization of multi-layer perceptron. Soft. Comput. (2020). https://doi.org/10.1007/s00500-020-04877-w

    Article  Google Scholar 

  69. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper Saddle River (1999)

    MATH  Google Scholar 

  70. Gupta, S.; Deep, K.: A novel hybrid sine cosine algorithm for global optimization and its application to train multilayer perceptrons. Appl. Intell. 50, 993–1026 (2020). https://doi.org/10.1007/s10489-019-01570-w

    Article  Google Scholar 

  71. Suratgar, A.A.; Tavakoli, M.B.; Hoseinabadi, A.: Modified Levenberg–Marquardt method for neural networks training. World Acad. Sci. Eng. Technol. 6, 46–48 (2005)

    Google Scholar 

  72. Mirjalili, S.: How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl. Intell. 43, 150–161 (2015). https://doi.org/10.1007/s10489-014-0645-7

    Article  Google Scholar 

  73. Faris, H.; Mirjalili, S.; Aljarah, I.: Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme. Int. J. Mach. Learn. Cybern. 10, 2901–2920 (2019). https://doi.org/10.1007/s13042-018-00913-2

    Article  Google Scholar 

  74. Zhang, X.; Wang, X.; Chen, H.; Wang, D.; Fu, Z.: Improved GWO for large-scale function optimization and MLP optimization in cancer identification. Neural Comput. Appl. 32, 1305–1325 (2020). https://doi.org/10.1007/s00521-019-04483-4

    Article  Google Scholar 

  75. Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M.: Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks. In: Mirjalili, S., Song Dong, J., Lewis, A. (eds.) Studies in computational intelligence, pp. 23–46. Springer International Publishing, Cham (2020)

    Google Scholar 

  76. Khishe, M.; Mosavi, M.R.: Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm. Appl. Acoust. 157, 107005 (2020). https://doi.org/10.1016/j.apacoust.2019.107005

    Article  Google Scholar 

  77. Heidari, A.A.; Faris, H.; Aljarah, I.; Mirjalili, S.: An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft. Comput. 23, 7941–7958 (2019). https://doi.org/10.1007/s00500-018-3424-2

    Article  Google Scholar 

  78. Khishe, M.; Mohammadi, H.: Passive sonar target classification using multi-layer perceptron trained by salp swarm algorithm. Ocean Eng. 181, 98–108 (2019). https://doi.org/10.1016/j.oceaneng.2019.04.013

    Article  Google Scholar 

  79. Bairathi, D.; Gopalani, D.: Numerical optimization and feed-forward neural networks training using an improved optimization algorithm: multiple leader salp swarm algorithm. Evol. Intell. (2019). https://doi.org/10.1007/s12065-019-00269-8

    Article  Google Scholar 

  80. Xu, J.; Yan, F.: Hybrid Nelder–Mead algorithm and dragonfly algorithm for function optimization and the training of a multilayer perceptron. Arab. J. Sci. Eng. 44, 3473–3487 (2019). https://doi.org/10.1007/s13369-018-3536-0

    Article  Google Scholar 

  81. Mirjalili, S.; Hashim, S.Z.M.; Sardroudi, H.M.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218, 11125–11137 (2012)

    MathSciNet  MATH  Google Scholar 

  82. Mirjalili, S.; Sadiq, A.S.: Magnetic optimization algorithm for training multi layer perceptron. In: 2011 IEEE 3rd International Conference on Communication Software and Networks. pp. 42–46 (2011)

  83. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Let a biogeography-based optimizer train your multi-layer perceptron. Inf. Sci. (Ny) 269, 188–209 (2014). https://doi.org/10.1016/j.ins.2014.01.038

    Article  MathSciNet  Google Scholar 

  84. Ghanem, W.A.H.M.; Jantan, A.: Training a neural network for cyberattack classification applications using hybridization of an artificial bee colony and monarch butterfly optimization. Neural Process. Lett. 51, 905–946 (2020). https://doi.org/10.1007/s11063-019-10120-x

    Article  Google Scholar 

  85. Sabir, M.M.; Khan, J.A.: Optimal design of PID controller for the speed control of DC motor by using metaheuristic techniques. Adv. Artif. Neural Syst. 2014, 1–8 (2014). https://doi.org/10.1155/2014/126317

    Article  Google Scholar 

  86. Ekinci, S.; Izci, D.; Hekimoglu, B.: PID speed control of DC motor using Harris Hawks optimization algorithm. In: 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). pp. 1–6 (2020)

  87. Bhatt, R.; Parmar, G.; Gupta, R.; Sikander, A.: Application of stochastic fractal search in approximation and control of LTI systems. Microsyst. Technol. 25, 105–114 (2019). https://doi.org/10.1007/s00542-018-3939-6

    Article  Google Scholar 

  88. Hekimoğlu, B.: Speed control of DC motor using PID controller tuned via kidney-inspired algorithm. BEU J. Sci. 8, 652–663 (2019). https://doi.org/10.17798/bitlisfen.496782

    Article  Google Scholar 

  89. Mishra, A.; Singh, N.; Yadav, S.: Design of optimal PID controller for varied system using teaching–learning-based optimization. In: Sharma, H., Govindan, K., Poonia, R., Kumar, S., El-Medany, W. (eds.) Advances in Computing and Intelligent Systems, pp. 153–163. Springer (2020). https://doi.org/10.1007/978-981-15-0222-4_13

  90. Qi, Z.; Shi, Q.; Zhang, H.: Tuning of digital PID controllers using particle swarm optimization algorithm for a CAN-Based DC motor subject to stochastic delays. IEEE Trans. Ind. Electron. 67, 5637–5646 (2020). https://doi.org/10.1109/TIE.2019.2934030

    Article  Google Scholar 

  91. Pongfai, J.; Su, X.; Zhang, H.; Assawinchaichote, W.: A novel optimal PID controller autotuning design based on the SLP algorithm. Expert Syst. 37, e12489 (2020). https://doi.org/10.1111/exsy.12489

    Article  Google Scholar 

  92. Kouassi, B.A.; Zhang, Y.; Mbyamm Kiki, M.J.; Ouattara, S.: Speed control of brushless de motor using Ant Colony Optimization. IOP Conf. Ser. Earth Environ. Sci. 431, 12022 (2020). https://doi.org/10.1088/1755-1315/431/1/012022

    Article  Google Scholar 

  93. Agarwal, J.; Parmar, G.; Gupta, R.: Application of sine cosine algorithm in optimal control of DC motor and robustness analysis. Wulfenia J. 24(11), 77–95 (2017)

  94. Agarwal, J.; Parmar, G.; Gupta, R.; Sikander, A.: Analysis of grey wolf optimizer based fractional order PID controller in speed control of DC motor. Microsyst. Technol. 24, 4997–5006 (2018). https://doi.org/10.1007/s00542-018-3920-4

    Article  Google Scholar 

  95. Hekimoğlu, B.: Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm. IEEE Access. 7, 38100–38114 (2019). https://doi.org/10.1109/ACCESS.2019.2905961

    Article  Google Scholar 

  96. Puangdownreong, D.: Fractional order PID controller design for DC motor speed control system via flower pollination algorithm. Trans. Electr. Eng. Electron. Commun. 17, 14–23 (2019). https://doi.org/10.37936/ecti-eec.2019171.215368

    Article  Google Scholar 

  97. Ekinci, S.; Hekimoğlu, B.; Demirören, A.; Eker, E.: Speed Control of DC Motor Using Improved Sine Cosine Algorithm Based PID Controller. In: 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). pp. 1–7 (2019)

  98. El-Deen, A.T.; Hakim Mahmoud, A.A.; El-Sawi, A.R.: Optimal PID tuning for DC motor speed controller based on genetic algorithm. Int. Rev. Autom. Control. 8, 80–85 (2015). https://doi.org/10.15866/ireaco.v8i1.4839

    Article  Google Scholar 

  99. Lotfy, A.; Kaveh, M.; Mosavi, M.R.; Rahmati, A.R.: An enhanced fuzzy controller based on improved genetic algorithm for speed control of DC motors. Analog Integr. Circuits Signal Process. (2020). https://doi.org/10.1007/s10470-020-01599-9

    Article  Google Scholar 

  100. Goldstein, H.; Poole, C.; Safko, J.: Classical mechanics, 3rd ed. Am. J. Phys. 70, 782–783 (2002). https://doi.org/10.1119/1.1484149

    Article  Google Scholar 

  101. Lennard-Jones, J.E.: On the determination of molecular fields. Proc. R. Soc. A. 106, 463–477 (1924)

    Google Scholar 

  102. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  103. Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks. pp. 1942–1948. IEEE (1995)

  104. Bayraktar, Z.; Komurcu, M.; Bossard, J.A.; Werner, D.H.: The wind driven optimization technique and its application in electromagnetics. IEEE Trans. Antennas Propag. 61, 2745–2757 (2013). https://doi.org/10.1109/TAP.2013.2238654

    Article  MathSciNet  MATH  Google Scholar 

  105. Yang, X.S.; Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009—Proceedings. pp. 210–214 (2009)

  106. Zhang, J.R.; Zhang, J.; Lok, T.M.; Lyu, M.R.: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training. Appl. Math. Comput. 185, 1026–1037 (2007). https://doi.org/10.1016/j.amc.2006.07.025

    Article  MATH  Google Scholar 

  107. Mangasarian, O.L.; Wolberg, W.H.: Cancer Diagnosis via Linear Programming. University of Wisconsin-Madison Department of Computer Sciences, Madison (1990)

    MATH  Google Scholar 

Download references

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Ekinci.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eker, E., Kayri, M., Ekinci, S. et al. A New Fusion of ASO with SA Algorithm and Its Applications to MLP Training and DC Motor Speed Control. Arab J Sci Eng 46, 3889–3911 (2021). https://doi.org/10.1007/s13369-020-05228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05228-5

Keywords

Navigation