Log in

Altitude and Attitude Stabilization of UAV Quadrotor System using Improved Active Disturbance Rejection Control

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An improved active disturbance rejection control (IADRC) is proposed to stabilize and reject exogenous disturbances and system uncertainties for a 6-degree of freedom (DOF) quadrotor system. We used the nonlinear model of the 6-DOF quadrotor system to design four IADRC units for the altitude and attitude stabilization. Stability analysis is demonstrated for both the extended state observers of each IADRC unit and the overall closed-loop system using Hurwitz stability criterion. The simulations are implemented under the MATLAB environment where the parameters of the IADRC units are tuned to minimize the multi-objective output performance index. The unmanned aerial vehicle is tested with different tracking scenarios while subjected to exogenous disturbances and system parameter uncertainties. The performance of the proposed IADRC is compared with that of the PID controller, and the simulations revealed that the proposed IADRC scheme stabilized and excellently counteracted the exogenous disturbances and system uncertainties and outperformed the PID used in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Belyavskyi, A.O.; Tomashevich, S.I.; Andrievsky, B.: Application of 2DOF quadrotor-based laboratory testbed for engineering education. In: 2017 25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta, pp. 939–944. IEEE (2017). ISBN: 978-1-5090-4533-4. https://doi.org/10.1109/MED.2017.7984240, http://ieeexplore.ieee.org/document/7984240/

  2. Dhivya, A.J.A.; Premkumar, J.: Quadcopter based technology for an emergency healthcare. In 2017 Third International Conference on Biosignals, Images and Instrumentation (ICBSII), March, pp. 1–3, Chennai. IEEE (2017). ISBN: 978-1-5090-4980-6. https://doi.org/10.1109/ICBSII.2017.8082284, http://ieeexplore.ieee.org/document/8082284/

  3. Abdullah, A.; Abu Bakar, E.; Mohamed Pauzi, M.Z.: Monitoring of traffic using unmanned aerial vehicle in Malaysia landscape perspective. J. Teknol. 76(1), 367–372 (2015). https://doi.org/10.11113/jt.v76.4043

    Article  Google Scholar 

  4. Watanabe, K.; Nakatsuka, T.; Nagai, I.: Production of a wall-climbing-type quadrotor and its experiment for verifying basic operations. In: 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China. IEEE, pp. 1850–1855 (2018). ISBN: 978-1-5386-6074-4. https://doi.org/10.1109/ICMA.2018.8484288, https://ieeexplore.ieee.org/document/8484288/

  5. Nathan, P.T.; Almurib, H.A.F.; Nandha Kumar, T.: A review of autonomous multi-agent quad-rotor control techniques and applications. In: 2011 4th International Conference on Mechatronics (ICOM), Kuala Lumpur, Malaysia. IEEE, pp. 1–7 (2011). ISBN: 978-1-61284-435-0. https://doi.org/10.1109/ICOM.2011.5937132, http://ieeexplore.ieee.org/document/5937132/

  6. Sahul, M.P.V.; Naveen Chander, V.; Kurian, T.: A novel method on disturbance rejection PID controller for quadcopter based on optimization algorithm. In: Third International Conference on Advances in Control and Optimization of Dynamical Systems, Kanpur, India, vol. 47, pp. 192–199 (2014). IFAC. ISBN: 9783902823601. https://doi.org/10.3182/20140313-3-IN-3024.00016, https://linkinghub.elsevier.com/retrieve/pii/S1474667016326568

    Article  Google Scholar 

  7. Alkamachi, A.; Erçelebi, E.: Modelling and genetic algorithm based-PID control of H-shaped racing quadcopter. Arab. J. Sci. Eng. 42(7), 2777–2786 (2017). https://doi.org/10.1007/s13369-017-2433-2

    Article  Google Scholar 

  8. Khatoon, S.; Nasiruddin, I.; Shahid, M.: Design and simulation of a hybrid PD-ANFIS controller for attitude tracking control of a quadrotor UAV. Arab. J. Sci. Eng. 42(12), 5211–5229 (2017). https://doi.org/10.1007/s13369-017-2586-z

    Article  MathSciNet  MATH  Google Scholar 

  9. **gjit, P.; Mitsantisuk, C.; Rungrangpitayagon, J.; Teerakawanich, N.: Quadrotor robot based on disturbance observer control. In: TENCON 2014—2014 IEEE Region 10 Conference. IEEE, pp. 1–6 (2014). ISBN: 978-1-4799-4075-2. https://doi.org/10.1109/TENCON.2014.7022400, http://ieeexplore.ieee.org/document/7022400/

  10. Aboudonia, A.; Rashad, R.; El-Badawy, A.: Time domain disturbance observer based control of a quadrotor unmanned aerial vehicle. In: 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT), Sarajevo, Bosnia and Herzegovina. IEEE, pp. 1–6, (2015). ISBN: 978-1-4673-8146-8. https://doi.org/10.1109/ICAT.2015.7340501, http://ieeexplore.ieee.org/document/7340501/

  11. Wang, H.; Chen, M.: Trajectory tracking control for an indoor quadrotor UAV based on the disturbance observer. Trans. Inst. Meas. Control 38(6), 675–692 (2016). https://doi.org/10.1177/0142331215597057

    Article  Google Scholar 

  12. Wang, N.; Deng, Q.: Finite-time disturbance observer based integral sliding mode control of a quadrotor. In: 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nan**g, China. IEEE, pp. 956–960 (2018). ISBN: 978-1-5386-7255-6. https://doi.org/10.1109/YAC.2018.8406509, https://ieeexplore.ieee.org/document/8406509/

  13. Zhao, Y.; Cao, Y.; Fan, Y.: Disturbance observer-based attitude control for a quadrotor. In: 2017 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS). IEEE, pp. 355–360 (2017). ISBN: 978-1-5386-3257-4. https://doi.org/10.1109/ICCSS.2017.8091439, http://ieeexplore.ieee.org/document/8091439/

  14. Zhang, R.; Quan, Q.; Cai, K.-Y.: Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl. 5(9), 1140–1146 (2011). https://doi.org/10.1049/iet-cta.2010.0273

    Article  MathSciNet  Google Scholar 

  15. Chang, K.; **a, Y.; Huang, K.; Ma, D.: Obstacle avoidance and active disturbance rejection control for a quadrotor. Neurocomputing 190, 60–69 (2016). https://doi.org/10.1016/j.neucom.2016.01.033

    Article  Google Scholar 

  16. Dou, J.; Kong, X.; Wen, B.: Altitude and attitude active disturbance rejection controller design of a quadrotor unmanned aerial vehicle. Proc. Inst. Mech. Eng. Part G J. Aerospace Eng. 231(9), 1732–1745 (2017). https://doi.org/10.1177/0954410016660871

    Article  Google Scholar 

  17. Ma, Z.; Jiao, S.M.: Research on the attitude control of quad-rotor UAV based on active disturbance rejection control. In: 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE). IEEE, pp. 45–49 (2017). ISBN: 978-1-5386-0483-0. https://doi.org/10.1109/CCSSE.2017.8087892

  18. Zhou, W.; Qin, L.; Li, L.; Jiang, W.: Quadrotor attitude control based on nonlinear active disturbance rejection control. In: 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Ningbo, China. IEEE, pp. 294–298 (2017). ISBN: 978-1-5386-3135-5. https://doi.org/10.1109/ICCIS.2017.8274790, http://ieeexplore.ieee.org/document/8274790/

  19. Ye, B.; Lan, W.; **, H.; Huang, C.: Linear active disturbance rejection control of quadrotor’s altitude and attitude. In: 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, pp. 1188–1193 (2017). ISBN: 978-1-5386-2901-7. https://doi.org/10.1109/YAC.2017.7967593, http://ieeexplore.ieee.org/document/7967593/

  20. Ma, D.; **a, Y.; Li, T.; Chang, K.: Active disturbance rejection and predictive control strategy for a quadrotor helicopter. IET Control Theory Appl. 10(17), 2213–2222 (2016). https://doi.org/10.1049/iet-cta.2016.0125

    Article  MathSciNet  Google Scholar 

  21. Ibraheem, I.K.; Abdul-Adheem, W.R.: On the improved nonlinear tracking differentiator based nonlinear PID controller design. Int. J. Adv. Comput. Sci. Appl. 7(10), 234–241 (2016). https://doi.org/10.14569/IJACSA.2016.071032

    Article  Google Scholar 

  22. Najm, A.A.; Ibraheem, I.K.: Nonlinear PID controller design for a 6-DOF UAV quadrotor system. Eng. Sci. Technol. Int. J. 22(4), 1087–1097 (2019). https://doi.org/10.1016/j.jestch.2019.02.005

    Article  Google Scholar 

  23. Sabatino, F.: Quadrotor control: modeling, nonlinear control design, and simulation. Master’s thesis, Royal Institute of Technology (2015). https://www.kth.se/polopoly_fs/1.588039!/ThesisKTH-FrancescoSabatino.pdf

  24. Han, **gqing; Han, **gqing: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009). https://doi.org/10.1109/TIE.2008.2011621

    Article  Google Scholar 

  25. Khalil, H.K.: Nonlinear Control. England, Global Edition. Pearson Education, London (2014). ISBN: 9781292060507. http://catalogue.pearsoned.co.uk/catalog/academic/product?ISBN=9781292060507-IS

  26. Abdul-Adheem, W.R.; Ibraheem, I.K.: An improved active disturbance rejection control for a differential drive mobile robot with mismatched disturbances and uncertainties. In: 3rd International Conference on Electrical and Electronic Engineering, Telecommunication Engineering and Mechatronics (EEETEM2017), Beirut, Lebanon, pp. 7–12 (2017). ar**v:1805.12170v1

  27. Humaidi, A.J.; Ibraheem, I.K.: Speed control of permanent magnet dc motor with friction and measurement noise using novel nonlinear extended state observer-based anti-disturbance control. Energies 12(9), 1651 (2019). https://doi.org/10.3390/en12091651

    Article  Google Scholar 

  28. Guo, B.-Z.; Zhao, Z.-L.: Active Disturbance Rejection Control for Nonlinear Systems. Wiley, Singapore (2016). ISBN: 9781119239932. https://doi.org/10.1002/9781119239932

    Book  Google Scholar 

  29. Li, Shihua; Yang, Jun; Chen, Wen Hua; Chen, **song: Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Trans. Ind. Electron. 59(12), 4792–4802 (2012). https://doi.org/10.1109/TIE.2011.2182011

    Article  Google Scholar 

  30. Abdul-Adheem, W.R.; Ibraheem, I.K.: From PID to nonlinear state error feedback controller. Int. J. Adv. Comput. Sci. Appl. 8(1), 312–322 (2017). https://doi.org/10.14569/IJACSA.2017.080140

    Article  Google Scholar 

  31. Maher, R.A.; Ibraheem, I.K.: On the design of robust governors of steam power systems using polynomial and state-space based H techniques: a comparative study. Int. J. Electr. Robot. Electron. Commun. Eng. 8, 1098–1103 (2014). https://doi.org/10.1999/1307-6892/9998962

    Article  Google Scholar 

  32. Ibraheem, I.K.: Anti-disturbance compensator design for unmanned aerial vehicle. J. Eng. 26(1), 86–103 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibraheem Kasim Ibraheem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najm, A.A., Ibraheem, I.K. Altitude and Attitude Stabilization of UAV Quadrotor System using Improved Active Disturbance Rejection Control. Arab J Sci Eng 45, 1985–1999 (2020). https://doi.org/10.1007/s13369-020-04355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04355-3

Keywords

Navigation