Log in

Genetic Algorithm-Optimized Fuzzy Lyapunov Reinforcement Learning for Nonlinear Systems

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper aims to introduce nonlinear optimization in the fuzzy reinforcement learning (RL) approach through genetic algorithm (GA)-based minimization. In conventional fuzzy RL, an agent attempts to find most optimal action at each stage by choosing an action having the lowest Q value or the greedy action. However, Q function is an unknown function and an attempt to find minima of such a function based on a limited set of values, in our view, is inaccurate and insufficient. A more rigorous approach would be to employ a nonlinear optimization procedure for finding minima of the Q function. We propose to employ genetic algorithm for finding optimal action value in each iteration of the algorithm rather than plain algebraic minimum. For guaranteed stability of the designed controller, we use Lyapunov theory-based fuzzy RL control with GA optimizer. We validate the performance of our controller on three benchmark nonlinear NL control problems: (1) inverted pendulum swing up, (2) cart pole balance, and (3) rotational/translational proof-mass actuator system. We carry out comparative evaluation of our controller against: (1) hybrid Lyapunov fuzzy RL control and (2) fuzzy Q learning control. Results show that our proposed GA-optimized fuzzy Lyapunov RL controller is able to achieve a high success rate with stable and superior tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Russell, S.J.; Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Kuala Lumpur (2016)

    MATH  Google Scholar 

  2. Sammut, C.; Webb, G.I.: Encyclopedia of Machine Learning and Data Mining. Springer, Berlin (2017)

    Book  Google Scholar 

  3. Mars, P.: Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  4. Silver, D.; et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484 (2016)

    Article  Google Scholar 

  5. Wang, H.; et al.: Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties. IEEE Trans. Cybern. 47(10), 3075–3087 (2017)

    Article  Google Scholar 

  6. Baghya Shree, S.; Kamaraj, N.: Hybrid neuro fuzzy approach for automatic generation control in restructured power system. Int. J. Electr. Power Energy Syst. 74, 274–285 (2016)

    Article  Google Scholar 

  7. Mannion, P. et al.: Dynamic economic emissions dispatch optimisation using multi-agent reinforcement learning. In: Proceedings of the Adaptive and Learning Agents Workshop (at AAMAS 2016). (2016)

  8. Liu, Y.; et al.: Partial-nodes-based state estimation for complex Networks with unbounded distributed delays. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3906–3912 (2018)

    Article  MathSciNet  Google Scholar 

  9. Rubio, J.J.: Modified optimal control with a back propagation network for robotic arms. IET Control Theory Appl. 6(14), 2216–2225 (2012)

    Article  MathSciNet  Google Scholar 

  10. de Jes´us Rubio, J.: SOFMLS: online self-organizing fuzzy modified least-squares network. IEEE Trans. Fuzzy Syst. 17(6), 1296–1309 (2009)

    Article  Google Scholar 

  11. Li, X.; et al.: Assessing information security risk for an evolving smart city based on fuzzy and grey FMEA. J Intell Fuzzy Syst. 34(4), 2491–2501 (2018)

    Article  Google Scholar 

  12. de Jes´us Rubio, J.; et al.: Neural network updating via argument Kalman filter for modeling of Takagi–Sugeno fuzzy models. J. Intell. Fuzzy Syst. 35(2), 2585–2596 (2018)

    Article  Google Scholar 

  13. Yen, V.T.; Nan, W.Y.; Van Cuong, P.: Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3520-3

    Article  Google Scholar 

  14. Yang, Z.; Ce, L.; Lian, L.: Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Appl. Energy 190, 291–305 (2017)

    Article  Google Scholar 

  15. Mohri, M.; Rostamizadeh, A.; Talwalkar, A.: Foundations of Machine Learning. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  16. Sharma, R.: Lyapunov theory based stable Markov game fuzzy control for non-linear systems. Eng. Appl. Artif. Intell. 55, 119–127 (2016)

    Article  Google Scholar 

  17. Kumar, A.; Sharma, R.: Fuzzy lyapunov reinforcement learning for non linear systems. ISA Trans. 67, 151–159 (2017)

    Article  Google Scholar 

  18. Aguilar-Ibanez, C.: A constructive Lyapunov function for controlling the inverted pendulum. In: American Control Conference, Westin Seattle Hotel, Seattle, Washington, USA, 11–13 June 2008

  19. Zhang, Q.; et al.: Energy-efficient scheduling for real-time systems based on deep Q-learning model. IEEE Trans. Sustain. Comput. 4, 132–141 (2017)

    Article  Google Scholar 

  20. Deng, Y.; et al.: Deep direct reinforcement learning for financial signal representation and trading. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 653–664 (2017)

    Article  Google Scholar 

  21. Such, F.P., et al.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning (2017). ar**v preprint ar**v:1712.06567

  22. Kumar, A.; Sharma, R.: Neural/fuzzy self learning Lyapunov control for non linear systems. Int. J. Inf. Technol. (2018). https://doi.org/10.1007/s41870-017-0074-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kukker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukker, A., Sharma, R. Genetic Algorithm-Optimized Fuzzy Lyapunov Reinforcement Learning for Nonlinear Systems. Arab J Sci Eng 45, 1629–1638 (2020). https://doi.org/10.1007/s13369-019-04126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04126-9

Keywords

Navigation