Log in

Effect of Immobilized Nitrifying Bacterial Consortium on Ammonia Biodegradation in Aquaculture Pond and Enhanced Growth of Labeo rohita: An In Vitro and In Vivo Studies

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This investigation was carried out to remove total ammonia nitrogen (TAN) in aquaculture system by employing immobilized heterotrophic nitrifying bacterial consortium. The bacterial consortium was immobilized on biodegradable and low cost, wood powder. Among the three wood powders tested, Thespesia populnae wood powder showed the highest (99%) nitrifying activity. Nitrifying bacteria immobilized Thespesia populnae wood powder at three different concentrations was applied in a 100-L tank stocked with Labeo rohita for TAN removal. The experiment tanks with the addition of immobilized wood powder were observed TAN concentration below 0.15 ± 0.1 mg/l. This was lower than the control tank without the addition of immobilized wood powder. A highest average body weight gain of Labeo rohita was observed in experiment tanks. The haematology profile in experiment tanks revealed a highest Hb and RBC count, reduction in WBC count and low blood ammonia concentration, which was contrary in control tanks. Histological study showed that severe gill damage occurred in control group, whereas experiment fishes possessed normal gill morphology. The immobilized wood powder was also applied in one hectare aquaculture earthen pond and observed a complete TAN elimination within 24 h. The present study reveals that the heterotrophic nitrifiers immobilized on wood powder could carry out efficient nitrification and thus eliminates TAN from aquaculture pond water and enhances fish growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ha, H.P.; Thu, N.H.; Thanh, T.H.; Tung, T.T.; Phuong, D.L.; Cong, L.T.N.: Isolation and selection of nitrifying bacteria with high biofilm formation for treatment of ammonium polluted aquaculture water. J. Vietnam. Environ. 8(1), 33–40 (2016)

    Google Scholar 

  2. Devi, P.A.; Padmavathy, P.; Aanand, S.; Aruljothi, K.: Review on water quality parameters in freshwater cage fish culture. Int. J. Appl. Res. 3(5), 114–120 (2017)

    Google Scholar 

  3. Kesharwani, S.; Dube, K.K.; Khan, R.: Effect of dichlorvos (nuvan) on behaviour, haematology and histology of freshwater teleost Labeo rohita. Int. J. Sci. Res. Methodol. 8(3), 132–146 (2018)

    Google Scholar 

  4. Jasmin, J.; Rahman, M.D.; Rahman, M.D.: Haematological changes in Labeo rohita (H.) due to exposure of pesticides, Difenoconazole and Thiamethoxam. Int. J. Contemp. Res. Rev. 9(1), 20199–20205 (2018)

    Google Scholar 

  5. Tzollas, N.M.; Zachariadis, G.A.; Anthemidis, A.N.; Stratis, J.A.: A new approach to indophenol blue method for determination of ammonium in geothermal waters with high mineral content. Int. J. Environ. Anal. Chem. 90(2), 115–126 (2010)

    Article  Google Scholar 

  6. Moustafa, G.G.; Shaaban, F.E.; Hadeed, A.H.A.; Elhady, W.M.: Immunotoxicological, biochemical, and histopathological studies on roundup and stomp herbicides in Nile catfish (Clarias gariepinus). Vet. World 9(6), 638–642 (2016)

    Article  Google Scholar 

  7. Gross, A.; Nemirovsky, A.; Zilberg, D.; Khaimov, A.; Brenner, A.; Snir, E.; Ronen, Z.; Nejidat, A.: Soil nitrifying enrichment as biofilter starters in intensive recirculating saline water aquaculture. Aquaculture 223(1–4), 51–62 (2003)

    Article  Google Scholar 

  8. Ogbonna, J.F.; Chinomso, A.A.: Determination of the concentration of ammonia that could have lethal effect on fish pond. Asian Res. Publ. Netw. J. Eng. Appl. Sci. 5(2), 1–5 (2010)

    Google Scholar 

  9. Padmavathi, P.; Sunitha, K.; Veeraiah, K.: Efficacy of probiotics in improving water quality and bacterial flora in fish ponds. Afr. J. Microbiol. Res. 6(49), 7471–7478 (2012)

    Article  Google Scholar 

  10. Karthik, R.; Pushpam, A.C.; Chelvan, Y.; Vanitha, M.C.: Efficacy of probiotic and nitrifier bacterial consortium for the enhancement of Litopenaeus Vannamei aquaculture. Int. J. Vet. Sci. Res. 1(1), 29–34 (2015)

    Google Scholar 

  11. Basavarajappa, S.H.; Raju, N.S.; Supreeth, M.; Hosmani, S.P.: Isolation and identification of heterotrophic nitrifying bacteria from sewage sludge biotechnology. Indian J. Appl. Res. 5(8), 228–229 (2015)

    Google Scholar 

  12. Li, Y.; Chapman, S.J.; Nicol, G.W.; Yao, H.: Nitrification and nitrifiers in acidic soils. Soil Biol. Biochem. 116, 290–301 (2018)

    Article  Google Scholar 

  13. Dong, Y.; Zhang, Y.; Tu, B.: Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate. Braz. J. Microbiol. 48(3), 515–521 (2017)

    Article  Google Scholar 

  14. Fumasoli, A.; Burgmann, H.; Weissbrodt, D.G.; Wells, G.F.; Beck, K.; Mohn, J.; Morgenroth, E.; Udert, K.M.: Growth of Nitrosococcus-related ammonia oxidizing bacteria coincides with extremely low ph values in wastewater with high ammonia content. Environ. Sci. Technol. 51(12), 6857–6866 (2017)

    Article  Google Scholar 

  15. Shan, H.; Obbard, P.: Ammonia removal from freshwater using nitrifying bacteria enriched from seawater aquaculture pond. Biotech. Lett. 25(17), 1469–1471 (2003)

    Article  Google Scholar 

  16. Erna, N.M.; Banerjee, S.; Khatoon, H.; Shariff, M.; Yusoff, F.M.D.: Immobilized nitrifying bacterial consortium for improving water quality, survival and growth of Penaeus monodon Fabricius 1798 postlarvae in hatchery system. Asian Fish. Sci. 26, 212–221 (2013)

    Google Scholar 

  17. Manju, N.J.; Deepesh, V.; Achuthan, C.; Philip, R.; Singh, I.S.B.: Immobilization of nitrifying bacterial consortia on wood particles for bioaugmenting nitrification in shrimp culture systems. Aquaculture 294(1–2), 65–75 (2009)

    Article  Google Scholar 

  18. Sahaya, S.D.; Akila, V.; Ashok, S.; Manikandan, A.; Santhanam, P.; Rajakumar, S.: Enrichment and isolation of nitrifying bacteria and molecular characterization of optimized nitrifiers from mangrove soil. Res. J. Life Sci. Bioinf. Pharm. Chem. Sci. 5(1), 712–724 (2019)

    Google Scholar 

  19. Bollmann, A.; French, E.; Laanbroek, H.J.: Isolation, cultivation, and characterization of ammonia oxidizing bacteria and archaea adapted to low ammonium concentrations. Methods Enzymol. 486, 55–88 (2011)

    Article  Google Scholar 

  20. Wood, T.M.; Saddler, J.N.: Increasing the availability of cellulose in biomass materials. Methods Enzymol. Acad. Press 160, 3–11 (1988)

    Article  Google Scholar 

  21. APHA: Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, Washington DC (2005)

    Google Scholar 

  22. Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J.: The colorimetric determination of phosphorus. J. Biol. Chem. 193, 265–270 (1951)

    Google Scholar 

  23. Carrol, N.V.; Longley, W.W.; Roe, J.H.: Glycogen determination in liver and muscle by use of anthrone reagent. J. Biol. Chem. 220, 583–593 (1956)

    Google Scholar 

  24. Folch, J.; Lees, M.; Sloane Stanles, G.H.: A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226(1), 497–509 (1957)

    Google Scholar 

  25. Hesser, E.F.: Methods for routine fish hematology. Progress. Fish-Cultur. 22(4), 164–171 (1960)

    Article  Google Scholar 

  26. Blaxhall, P.C.; Daisley, K.W.: Routine haematological methods for use with fish blood. J. Fish Biol. 5, 771–781 (1973)

    Article  Google Scholar 

  27. Culling, C.F.A.; Allison, R.T.; Barr, W.T.: Cellular Pathology Techniques, 4th edn. Elsevier, Amsterdam (2014)

    Google Scholar 

  28. Uemoto, H.; Saiki, H.: Distribution of Nitrosomonas europaea and Paracoccus denitrificans immobilized in tubular polymeric gel for nitrogen removal. Appl. Environ. Microbiol. 66(2), 816–819 (2000)

    Article  Google Scholar 

  29. Shan, H.; Obbard, J.P.: Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria. Appl. Microbiol. Biotechnol. 57, 791–798 (2001)

    Article  Google Scholar 

  30. Muter, O.; Mihailova, A.; Berzins, A.; Svirksts, K.; Patmalnieks, A.; Strikauska, S.; Grube, M.: Optimization of nitrification process by a bacterial consortium in the submerged biofiltration system with ceramic bead carrier. J. Microbial. Biochem. Technol. 6, 148–153 (2014)

    Article  Google Scholar 

  31. Lu, S.; Liao, M.; **e, C.; He, X.; Li, D.; Liu, Q.; Li, R.: Removing ammonium from aquaculture ponds using suspended biocarrier-immobilized ammonia-oxidizing microorganisms. Ann. Microbiol. 65(4), 2041–2046 (2015)

    Article  Google Scholar 

  32. Dzionek, A.; Wojcieszynska, D.; Guzik, U.: Natural carriers in bioremediation: a review. Electron. J. Biotechnol. 19(5), 28–36 (2016)

    Article  Google Scholar 

  33. Zhang, W.W.; Andong, Z.Y.; Zhang, M.; Wang, Q.N.; Wei, Y.Q.; Chen, L.X.: Isolation and characterization of a heterotrophic nitrifier Proteus mirabilis strain V7 and its potential application in NH4 +–N removal. Ann. Microbiol. 10, 1–8 (2014)

    Google Scholar 

  34. Pakhira, C.; Nagesh, T.S.; Abraham, T.J.; Dash, G.; Behera, S.: Stress responses in Labeo rohita transported at different densities. Aquac. Rep. 2, 39–45 (2015)

    Article  Google Scholar 

  35. Shin, K.W.; Kim, S.H.; Kim, J.H.; Hwang, S.D.; Kang, J.C.: Toxic effects of ammonia exposure on growth performance, hematological parameters, and plasma components in rockfish, Sebastes schlegelii, during thermal stress. Fish. Aquat. Sci. 19(1), 44–48 (2016)

    Article  Google Scholar 

  36. Naidu, N.G.; Kumar, V.; Shameem, U.: Acute and sub acute toxic effect of ammonia on behavioural and haematological responses of Indian major carp Labeo rohita Ham, 1822. Int. J. Fish. Aquat. Stud. 5(2), 332–335 (2017)

    Google Scholar 

  37. Li, Y.; Boyd, C.E.: Laboratory tests of bacterial amendments for accelerating oxidation rates of ammonia, nitrite and organic matter in aquaculture pond water. Aquaculture 460, 45–48 (2016)

    Article  Google Scholar 

  38. Maheswaran, R.; Devapaul, A.; Muralidharan, S.; Velmurugan, B.; Ignacimuthu, S.: Haematological studies of fresh water fish, Clarias batrachus (L.) exposed to mercuric chloride. Int. J. Integr. Biol. 2(1), 49–54 (2008)

    Google Scholar 

  39. Yoon, G.; Al-Saadi, N.; Ambuali, A.: Gill histology of Nile tilapia Oreochromis niloticus following chronic and acute exposure to ammonia. J. Agric. Mar. Sci. 20, 66–72 (2015)

    Article  Google Scholar 

  40. Gobinath, J.; Ramanibai, R.: Histopathological studies in the gill, liver and kidney of the freshwater fish Labeo rohita fingerlings. Int. J. Innov. Res. Sci. Eng. Technol. 3(3), 10296–10301 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahaya Sukeetha, D., Dinesh Kumar, S., Manikandan, A. et al. Effect of Immobilized Nitrifying Bacterial Consortium on Ammonia Biodegradation in Aquaculture Pond and Enhanced Growth of Labeo rohita: An In Vitro and In Vivo Studies. Arab J Sci Eng 45, 1–13 (2020). https://doi.org/10.1007/s13369-019-04073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04073-5

Keywords

Navigation