Log in

Floodplain Map** Using HEC-RAS and ArcGIS: A Case Study of Kabul River

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper describes the application of HEC-RAS model to the development of floodplain maps for the part of Kabul river that lies in Pakistan. The intent is to assist policy makers and planners in the development of flood mitigation measures for the Khyber Pakhtunkhwa Province, which experienced unprecedented floods in July/August 2010 exposing the vulnerability of the province to this natural catastrophe. Owing to its reasonable accuracy and free availability, shuttle radar topography mission digital elevation model was chosen for the extraction of geometrical data for the river. Conventional flood frequency analysis, involving log-normal, Gumbel’s, and log-Pearson type III (LP3) distributions, was used to calculate extreme flows with different return periods. Using Kolmogorov–Smirnov (KS) test, LP3 was found to be the best distribution for the Kabul River. The peak floods from frequency analysis were input into HEC-RAS model to find the corresponding flood levels expected along river reaches extending through Warsak dam to Attock. Results obtained with HEC-RAS model were used in combination with ArcGIS to prepare floodplain maps for different return periods. Through floodplain maps, areas that are vulnerable to flooding hazards have been identified. Analysis of floodplain maps indicated that more than 400 % area is likely to be inundated as compared to the normal flow of the river. Most of the area found to be vulnerable to flooding is currently used for agriculture. Comparison of simulation of 2010 flood with the image of the flood taken by MODIS clearly shows a close agreement between the two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dang N.M., Babel M.S., Luong H.T.: Evaluation of floods risk parameters in the day river flood diversion area, Red River Delta, Vietnam. J. Nat. Hazard 56, 169–194 (2011)

    Article  Google Scholar 

  2. Intergovernmental Panel on Climate Change (IPCC): Impacts, adaptation and vulnerability. Asia climate change 2007. In: Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; Hanson, C.E. (eds.) Cambridge University Press, Cambridge (2007)

  3. Gosain A.K., Rao S., Basuray D.: Climate change impact assessment on hydrology of Indian River basins. Curr. Sci. 90(3), 346–353 (2006)

    Google Scholar 

  4. Xu C.Y.: Modelling the effects of climate change on water resources in Central Sweden. Water Resour. Manag. 14(3), 177–189 (2000)

    Article  Google Scholar 

  5. Khan B., Iqbal M.J., Yosufzal M.A.K.: Flood risk assessment of river Indus of Pakistan. Arab. J. Geosci. 4, 115–122 (2009)

    Article  Google Scholar 

  6. de Moel H., Alphen J.V., Aerts J.C.J.H.: Flood maps in Europe—methods, availability and use. Nat. Hazards Earth Syst. Sci. 9, 289–301 (2009)

    Article  Google Scholar 

  7. Klingeman, P.: Analysis techniques: flood frequency analysis. Oregon State University. Accessed 08 Jan 2012 from http://water.oregonstate.edu/streamflow/ (2005)

  8. Ouma Y.O., Tateishi R.: Urban flood vulnerability and risk map** using integrated multi-parametric AHP and GIS: methodological overview and case study assessment. Water 6(6), 1515–1545 (2014)

    Article  Google Scholar 

  9. Deng L., McCabe M.F., Stenchikov G., Evans J.P., Kucera P.A.: Simulation of flash-flood-producing storm events in Saudi Arabia using the weather research and forecasting model. J. Hydrometeorol. 16, 615–630 (2015)

    Article  Google Scholar 

  10. Dawod G., Koshak N.: Develo** GIS-based unit hydrographs for flood management in Makkah metropolitan area, Saudi Arabia. J. Geogr. Inf. Syst. 3(2), 153–159 (2011)

    Google Scholar 

  11. Dawod G., Mirza M., Al-Ghamdi K.: GIS-based spatial map** of flash flood hazards in Makkah city, Saudi Arabia. J. Geogr. Inf. Syst. 3(3), 217–223 (2011)

    Google Scholar 

  12. Metwaly, M.; El-Awadi, E.; Al-Arifi, N.: Flooding risk analysis of the central part of western Saudi Arabia using remote sensing data. In: Proceedings of the Fifth National GIS Symposium in Saudi Arabia, Al-Khobar, April 26–28 (2010)

  13. Al-Saud M.: Assessment of flood hazard of Jeddah area 2009, Saudi Arabia. J. Water Resour. Prot. 2, 839–847 (2010)

    Article  Google Scholar 

  14. United States Army Corps of Engineers (USACE): Hydraulic Reference Manual v.4.1. Hydraulic Engineering Center, USA (2010)

  15. Al-Qudah K.A.: Floods as water resource and as a hazard in arid regions: a case study in Southern Jordan. Jordan J. Civ. Eng. 5(1), 148–161 (2011)

    Google Scholar 

  16. Manandhar, B.: Flood plain analysis and risk assessment of Lothar Khola. Master of Science Thesis in Watershed Management. Tribhuvan University Institute of Forestry Pokhara, Nepal (2010)

  17. Solaimani K.: Flood forecasting based on GIS and hydraulic model. J. Adv. Dev. Res. 1(1), 125–131 (2011)

    Google Scholar 

  18. Abdelbasset M., Abderrahim L., Chaouni A.A., Abdellah B., Lahcen B., Laila B.: Integration of GIS and HEC-RAS in floods modeling of the Ouergha river, Northern Morocco. Eur. Sci. J. 11(2), 1857–7881 (2015)

    Google Scholar 

  19. ESRI (Environmental Systems Research Institute), ArcView GIS Extensions, http://www.esri.com/software/arcgis/index.html, Accessed 15 Sept 2012 (1999)

  20. Kabir U., Gurung D.R., Giriraj A., Shrestha B.: Application of remote sensing and GIS for flood hazard management: a case study from Sindh province, Pakistan. Am. J. Geogr. Inf. Syst. 2(1), 1–5 (2013)

    Google Scholar 

  21. Government of Pakistan (GoP): Pakistan Floods 2010. Preliminary Damage and Needs Assessment. Islamabad, Pakistan (2010)

  22. Gaurav K., Sinha R., Panda P.K.: The Indus flood of 2010 in Pakistan: a perspective analysis using remote sensing data. Nat. Hazards 59, 1815–1826 (2011)

    Article  Google Scholar 

  23. National Disaster Management Authority (NDMA): Annual report 2010. Prime minister’s secretariat Islamabad, Paksitan. p. 15 (2011)

  24. Khan, M.I.: Flood frequency analysis in rivers of NWFP. M.Sc. Thesis. University of Engineering and Technology, Peshawar, Pakistan (1995)

  25. Hussain, E.; Ural, S.; Malik, A.; Shan, J.: Map** Pakistan 2010 floods using remote sensing data. American Society for Photogrammetry and Remote Sensing. Annual conference held at Milwaukee Wisconsin on May 1–5, USA (2011)

  26. Kwak, Y.; Akira, H.; Hironori, I.; Kazuhiko, F.: Flood risk assessment using potential inundation level and ALOS Images: a case study in Kabul river, Pakistan: ICHARM under UNESCO PWRI Tukuba Japan, NH1.3/HS12.7 EGU2011-4448 (2011)

  27. Sayama T., Ozawa G., Kawakami T., Nabesaka S., Fukami K.: Rainfall–runoff–inundation analysis of the 2010 Pakistan flood in the Kabul river basin. Hydrol. Sci. J. 57(2), 298–312 (2012)

    Article  Google Scholar 

  28. Ushiyama T., Sayama T., Tatebe Y., Fujioka S., Fukami K.: Numerical simulation of 2010 Pakistan flood in the Kabul river basin by using lagged ensemble rainfall forecasting. J. Hydrometeorol. 15, 193–211 (2014)

    Article  Google Scholar 

  29. Samarasinghea, S.M.J.S.; Nandalalb, H.K.; Weliwitiyac, D.P.; Fowzed, J.S.M.; Hazarikad, M.K.; Samarakoond, L.: Application of remote sensing and GIS for flood risk analysis: a case study at Kalu-Ganga river, Sri Lanka. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science XXXVIII, Part 8, Kyoto, Japan (2010)

  30. Wolf A.T., Natharus J.A., Danialson J.J., Ward B.S., Pender J.K.: International basins of the world. Int. J. Water Resour. Dev. 15, 387–427 (1999)

    Article  Google Scholar 

  31. International Union for Conservation of Nature (IUCN): Pollution and the Kabul river. The world conservation union. IUCN-SPCS Unit, Planning, Environment and Development Department Civil Secretariat, Peshawar, Pakistan (1994)

  32. Rabus B., Eineder M., Roth A., Bamler R.: The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar, Photogramm. Remote Sens. 57, 241–262 (2003)

    Google Scholar 

  33. Gorokhovich Y., Voustianiouk A.: Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens. Environ. 104, 409–415 (2006)

    Article  Google Scholar 

  34. Sanders B.F.: Evaluation of on-Line DEMS for flood inundation modeling. Adv. Water Resour. 30, 1831–1843 (2007)

    Article  Google Scholar 

  35. Schumann G.J.P., Matgen P., Cutler M.E.J., Black A., Hoffmann L., Pfister L.: Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. J. Photogramm. Remote Sens. 63, 283–296 (2008)

    Article  Google Scholar 

  36. Ho T.K., Umitsu M., Yamaguchi Y.: Flood hazard map** by satellite images and SRTM DEM in the Vu Gia–Thu Bon Alluvial Plain, Central Vietnam. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Xxxviii(8), 275–280 (2010)

    Google Scholar 

  37. Chow V.T., Maidment D.R., Mays L.W.: Applied Hydrology. McGraw-Hill Book Co., New York (1988)

    Google Scholar 

  38. Interagency Advisory Committee on Water Data (IACWD): Guidelines for determining flood flow frequency. Bulletin #17B. US Geological Survey Office, Water Data Coordination, Reston, Va (1982)

  39. Ang A.H.S., Tang W.H.: Probability Concepts in Engineering, Planning and Design, vol. 1, Basic Principles. Wiley, New York (1984)

    Google Scholar 

  40. Gumbel E.J.: Statistics of Extremes, pp. 375. Columbia University Press, New York (1958)

    MATH  Google Scholar 

  41. Stedinger J.R.: Fitting log normal distributions to hydrologic data. Water Resour. Res. 163, 481–490 (1980)

    Article  Google Scholar 

  42. Hoshi K., Stedinger J.R., Burges S.J.: Estimation of log-normal quantiles: Monte Carlo results and first-order approximations. J. Hydrol. 71(1–2), 1–30 (1984)

    Article  Google Scholar 

  43. McCuen R.H.: Modeling Hydrologic Change: Statistical Methods, pp. 381. Lewis Publishers, Washington (2003)

    Google Scholar 

  44. McCuen R.H.: Hydrologic Analysis and Design, 2nd edn. pp. 521. Prentice Hall, New Jersey (1998)

    Google Scholar 

  45. Phillips, B.C.; Yu, S.; Thompson, G.R.; Silva, N.: 1D and 2D modeling of urban drainage systems using XP-SWMM and TUFLOW. In: 10th International Conference on Urban Drainage, 21–26 August 2005, Copenhagem (Denmark) (2005)

  46. Chow V.T.: Open Channel Hydraulics. McGraw-Hill Book Co., New York (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Usman Saeed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattak, M.S., Anwar, F., Saeed, T.U. et al. Floodplain Map** Using HEC-RAS and ArcGIS: A Case Study of Kabul River. Arab J Sci Eng 41, 1375–1390 (2016). https://doi.org/10.1007/s13369-015-1915-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1915-3

Keywords

Navigation