Log in

Factorial Experimental Designs Elucidate Significant Variables Affecting Data Acquisition on a Quadrupole Orbitrap Mass Spectrometer

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Instrument parameter values for a quadrupole Orbitrap mass spectrometer were optimized for performing global proteomic analyses. Fourteen factors were evaluated for their influence on data-dependent acquisition with an emphasis on both the rate of sequencing and spectral quality by maximizing two individually tested response variables (unique peptides and protein groups). Of the 14 factors, 12 factors were assigned significant contrast values (P < 0.05) for both response variables. Fundamentally, when optimizing parameters, a balance between spectral quality and duty cycle needs to be reached in order to maximize proteome coverage. This is especially true when using a data-dependent approach for sequencing complex proteomes. For example, maximum ion injection time, automatic gain control settings, and minimum threshold settings for triggering MS/MS isolation and activation all heavily influence ion signal, the number of spectra collected, and spectral quality. To better assess the effect these parameters have on data acquisition, all MS/MS data were parsed according to ion abundance by calculating the percent of the AGC target reached for each MS/MS event and then compared with successful peptide-spectrum matches. This proved to be an effective approach for understanding the effect of ion abundance on successful peptide-spectrum matches and establishing minimum ion abundance thresholds for triggering MS/MS isolation and activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cravatt, B.F., Simon, G.M., Yates, J.R.: The biological impact of mass-spectrometry-based proteomics. Nature 450, 991–1000 (2007)

    Article  CAS  Google Scholar 

  2. Bantscheff, M., Lemeer, S., Savitski, M.M., Kuster, B.: Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 404, 939–965 (2012)

    Article  CAS  Google Scholar 

  3. Hu, Q.Z., Noll, R.J., Li, H.Y., Makarov, A., Hardman, M., Cooks, R.G.: The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40, 430–443 (2005)

    Article  CAS  Google Scholar 

  4. Michalski, A.; Damoc, E.; Hauschild, J. P.; Lange, O.; Wieghaus, A.; Makarov, A.; Nagaraj, N.; Cox, J.; Mann, M.; Horning, S.: Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol. Cell. Proteom. 10, (2011). doi:10.1074/mcp.M111.011015

  5. Kelstrup, C.D., Young, C., Lavallee, R., Nielsen, M.L., Olsen, J.V.: Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. J. Proteome Res. 11, 3487–3497 (2012)

    Article  CAS  Google Scholar 

  6. Vining, B.A., Bossio, R.E., Marshall, A.G.: Phase correction for collision model analysis and enhanced resolving power of Fourier transform ion cyclotron resonance mass spectra. Anal. Chem. 71, 460–467 (1999)

    Article  CAS  Google Scholar 

  7. Second, T.P., Blethrow, J.D., Schwartz, J.C., Merrihew, G.E., MacCoss, M.J., Swaney, D.L., Russell, J.D., Coon, J.J., Zabrouskov, V.: Dual-Pressure linear ion trap mass spectrometer improving the analysis of complex protein mixtures. Anal. Chem. 81, 7757–7765 (2009)

    Article  Google Scholar 

  8. Olsen, J.V., Macek, B., Lange, O., Makarov, A., Horning, S., Mann, M.: Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 4, 709–712 (2007)

    Article  CAS  Google Scholar 

  9. Sun, L.L., Zhu, G.J., Dovichi, N.J.: Comparison of the LTQ-Orbitrap Velos and the Q-Exactive for proteomic analysis of 1–1000 ng RAW 264.7 cell lysate digests. Rapid Commun. Mass Spectrom. 27, 157–162 (2013)

    Article  CAS  Google Scholar 

  10. Fisher, R.A.: The Design of Experiments. Oliver and Boyd, Edinburgh, Scotland (1935)

    Google Scholar 

  11. Shuford, C.M., Li, Q.Z., Sun, Y.H., Chen, H.C., Wang, J., Shi, R., Sederoff, R.R., Chiang, V.L., Muddiman, D.C.: Comprehensive quantification of monolignol-pathway enzymes in Populus trichocarpa by Protein Cleavage Isotope Dilution Mass Spectrometry. J. Proteome Res. 11, 3390–3404 (2012)

    Article  CAS  Google Scholar 

  12. Robichaud, G., Dixon, R.B., Potturi, A.S., Cassidy, D., Edwards, J.R., Sohn, A., Dow, T.A., Muddiman, D.C.: Design, modeling, fabrication, and evaluation of the air amplifier for improved detection of biomolecules by electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 300, 99–107 (2011)

    Article  CAS  Google Scholar 

  13. Walker, S.H., Papas, B.N., Comins, D.L., Muddiman, D.C.: Interplay of permanent charge and hydrophobicity in the electrospray ionization of glycans. Anal. Chem. 82, 6636–6642 (2010)

    Article  CAS  Google Scholar 

  14. Barry, J.A., Muddiman, D.C.: Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments. Rapid Commun. Mass Spectrom. 25, 3527–3536 (2011)

    Article  CAS  Google Scholar 

  15. Andrews, G.L., Dean, R.A., Hawkridge, A.M., Muddiman, D.C.: Improving proteome coverage on a LTQ-Orbitrap using design of experiments. J. Am. Soc. Mass Spectrom. 22, 773–783 (2011)

    Article  CAS  Google Scholar 

  16. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley and Sons, Inc., Hoboken, NJ (2005)

    Google Scholar 

  17. Riter, L.S., Vitek, O., Gooding, K.M., Hodge, B.D., Julian, R.K.: Statistical design of experiments as a tool in mass spectrometry. J. Mass Spectrom. 40, 565–579 (2005)

    Article  CAS  Google Scholar 

  18. Eliasson, M., Rannar, S., Madsen, R., Donten, M.A., Marsden-Edwards, E., Moritz, T., Shockcor, J.P., Johansson, E., Trygg, J.: Strategy for optimizing LC-MS data processing in metabolomics: a design of experiments approach. Anal. Chem. 84, 6869–6876 (2012)

    Article  CAS  Google Scholar 

  19. Telford, J.K.: A Brief introduction to design of experiments. Johns Hopkins APL Tech. Dig. 27, 224–232 (2007)

    Google Scholar 

  20. Perkins, D.N., Pappin, D.J.C., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999)

    Article  CAS  Google Scholar 

  21. Weatherly, D.B., Atwood, J.A., Minning, T.A., Cavola, C., Tarleton, R.L., Orlando, R.: A heuristic method for assigning a false-discovery rate for protein identifications from mascot database search results. Mol. Cell. Proteom. 4, 762–772 (2005)

    Article  CAS  Google Scholar 

  22. JMP Version 9. SAS Institute Inc., Cary, NC, 1989–2013.

  23. JMP Design of Experiments. SAS Institute Inc. Cary, NC (2013)

  24. Jedrychowski, M.P.; Huttlin, E.L.; Haas, W.; Sowa, M.E.; Rad, R.; Gygi, S.P.: Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol. Cell. Proteom. 10, (2011). doi:10.1074/mcp.M111.009910

  25. Elias, J.E., Gygi, S.P.: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Benjamin Orsburn for assisting with the data processing. The authors gratefully acknowledge funding support from NSF Grant CBET-0966859, the W. M. Keck Foundation, and North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Muddiman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall, S.M., Cardasis, H.L. & Muddiman, D.C. Factorial Experimental Designs Elucidate Significant Variables Affecting Data Acquisition on a Quadrupole Orbitrap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 24, 1501–1512 (2013). https://doi.org/10.1007/s13361-013-0693-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0693-y

Key words

Navigation