Log in

Development of earth/climate system models in China: A review from the Coupled Model Intercomparison Project perspective

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The development of coupled earth/climate system models in China over the past 20 years is reviewed, including a comparison with other international models that participated in the Coupled Model Intercomparison Project (CMIP) from phase 1 (CMIP1) to phase 4 (CMIP4). The Chinese contribution to CMIP is summarized, and the major achievements from CMIP1 to CMIP3 are listed as a reference for assessing the strengths and weaknesses of Chinese models. After a description of CMIP5 experiments, the five Chinese models that participated in CMIP5 are then introduced. Furthermore, following a review of the current status of international model development, both the challenges and opportunities for the Chinese climate modeling community are discussed. The development of high-resolution climate models, earth system models, and improvements in atmospheric and oceanic general circulation models, which are core components of earth/climate system models, are highlighted. To guarantee the sustainable development of climate system models in China, the need for national-level coordination is discussed, along with a list of the main components and supporting elements identified by the US National Strategy for Advancing Climate Modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anav, A., P. Friedlingstein, M. Kidston, et al., 2013: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth System Models. J. Climate, 26, 6801–6843.

    Article  Google Scholar 

  • Arora, V. K., J. F. Scinocca, G. J. Boer, et al., 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    Article  Google Scholar 

  • Bao, Q., P. Lin, T. Zhou, et al., 2013: The Flexible Global Ocean-Atmosphere-Land System Model, Spectral Version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576.

    Article  Google Scholar 

  • Bellenger, H, E. Guilyardi, J. Leloup, et al., 2013: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 1999–2018, doi: 10.1007/s00382-013-1783-z.

    Article  Google Scholar 

  • Chen **aolong, Zhou Tianjun, and Guo Zhun, 2014: Climate sensitivities of two versions of FGOALS model to idealized radiative forcing. Sci. China Earth Sci., 57, 1363–1373, doi: 10.1007/s11430-013-4692-4.

    Article  Google Scholar 

  • Collins, W. J., N. Bellouin, M. D. Boucher, et al., 2011: Development and evaluation of an Earth-System Model-HadGEM2. Geosci. Model Dev., 4, 997–1062, doi:10.5194/gmdd-4-997-2011.

    Article  Google Scholar 

  • Dong, L., T. J. Zhou, and B. Wu, 2014: Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Climate. Dyn., 42, 203–217.

    Article  Google Scholar 

  • —, and —, 2014: The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the 20th century: Competing forcing roles of GHGs and anthropogenic aerosols, J. Climate, 27, 3348–3362.

    Article  Google Scholar 

  • Dufresne, J. L., M. A. Foujols, S. Denvil, et al., 2013: Climate change projections using the IPSL-CM5 earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 2123–2165.

    Article  Google Scholar 

  • Dunne, J. P., J. G. John, A. J. Adcroft, et al., 2012: GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 6646–6665.

    Article  Google Scholar 

  • Flato, G., J. Marotzke, B. Abiodun, et al., 2013. Evaluation of climate models. Climate Change 2013: The Physical Science Basis. Stocker, T. F., D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1522 pp.

    Google Scholar 

  • Gates, W. L., P. R., Rowntree, and Q. C. Zeng, 1990: Validation of climate model. Climatic Change 1990: The IPCC Scientific Assessment. Houghton, J. T., G. J. Jenkins, and J. J. Rphraume, Eds., Cambridge University Press, Cambridge, Great Britain, New York, NY, USA and Melbourne, Australia, 365 pp.

    Google Scholar 

  • —, J. F. B. Mitchell, G. J. Boer, et al., 1992: Climate modelling, climate prediction and model validation. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. Houghton, J. T., B. A. Callander, and S. K. Varney, Eds., Cambridge University Press, Cambridge, Great Britain, New York, NY, USA, and Victoria, Australia, 200 pp.

    Google Scholar 

  • —, A. Henderson-Sellers, G. J. Boer, et al., 1995: Climate models evaluation. Climate Change 1995: The Science of Climate Change. Houghton, J. T., L. G. Meira Filho, B. A. Callander, et al., Eds., Cambridge University Press, Cambridge, Great Britain, New York, NY, USA and Melbourne, Australia, 572 pp.

    Google Scholar 

  • Giorgetta, M., J. Jungclaus, C. H. Reick, et al., 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Inter-comparison Project phase 5. J. Adv. Model Earth Syst., 5, 572–597, doi:10.1002/jame.20038.

    Article  Google Scholar 

  • He, C., and T. J. Zhou, 2014: The two interannual variability modes of the western North Pacific subtropical high simulated by 28 CMIP5-AMIP models. Climate Dyn., doi: 10.1007/s00382-014-2068-x. (in press)

    Google Scholar 

  • Huang **, Wang Pengfei, Hu Kaiming, et al., 2014: An introduction to the Integrated Climate Model of the Center for Monsoon System Research and its simulated influence of El Niño on East Asianwestern North Pacific climate. Adv. Atmos. Sci., 31, 1136–1146, doi: 10.1007/s00376-014-3233-1.

    Article  Google Scholar 

  • Ilyina, T., K. D. Six, J. Segschneider, et al., 2013: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth System Model in different CMIP5 experimental realizations. J. Adv. Model Earth Syst., 5, 287–315, doi:10.1029/2012MS000178.

    Google Scholar 

  • Ji, D., L. Wang, J. Feng, et al., 2014: Description and basic evaluation of BNU-ESM version 1. Geosci. Model Dev. Discuss., 7, 1601–1647.

    Article  Google Scholar 

  • Jones, C. D., J. K. Hughes, N. Bellouin, et al., 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543–570, doi:10.5194/gmd-4-543-2011.

    Article  Google Scholar 

  • Li Lijuan, Lin Pengfei, Yu Yongqiang, et al., 2013: The Flexible Global Ocean-Atmosphere-Land System Model Grid-point Version 2: FGOALS-g2. Adv. At-mos. Sci., 30, 543–560.

    Article  Google Scholar 

  • Long, M. C., K. Lindsay, S. Peacock, et al., 2013: Twentieth-century oceanic carbon uptake and storage in CESM1 (BGC). J. Climate, 26, 6775–6800.

    Article  Google Scholar 

  • Man Wenmin and Zhou Tianjun, 2011: Forced response of atmospheric oscillations during the last millennium simulated by a climate system model. Chin. Sci. Bull., 56, 3042–3052.

    Article  Google Scholar 

  • — and —, 2014: Regional-scale surface air temperature and East Asian summer monsoon changes during the last millennium simulated by the FGOALS-gl climate system model. Adv. Atmos. Sci., 31, 765–778.

    Article  Google Scholar 

  • McAvaney, B. J., C. Covey, S. Joussaume, et al., 2001: Model evaluation. Climate Change 2001: The Science Basis. Houghton, J. T., Y. Ding, D. J. Griggs, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp.

    Google Scholar 

  • Meehl, G. A., J. Boer, C. Covey, et al., 1997: Intercomparison makes for a better climate model. Eos. Trans. Amer. Geophys. Union, 78, 445–451.

    Article  Google Scholar 

  • —, —, —, et al., 2000: The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteor. Soc., 81, 313–318.

    Article  Google Scholar 

  • —, C. Covey, B. McAvaney, et al., 2005: Overview of the Coupled Model Intercomparison Project. Bull. Amer. Meteor. Soc., 86, 89–93.

    Article  Google Scholar 

  • —, C. Covey, T. Delworth, et al., 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394, doi: 10.1175/BAMS-88-9-1383.

    Article  Google Scholar 

  • Qiao, F. L., Y. L. Yuan, Y. Z. Yang, et al., 2004: Waveinduced mixing in the upper ocean: Distribution and application in a global ocean circulation model. Geophys. Res. Lett., 31, L11303, doi:10.1029/2004GL019824.

    Article  Google Scholar 

  • —, Z. Y. Song, Y. Bao, et al., 2013: Development and evaluation of an Earth System Model with surface gravity waves. J. Geophys. Res. Oceans, 118, 4514–4524.

    Article  Google Scholar 

  • Randall, D. A., R. A. Wood, S. Bony, et al., 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis. Solomon, S., D. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

    Google Scholar 

  • Shao, P., X. B. Zeng, K. Sakaguchi, et al., 2013: Terrestrial carbon cycle: Climate relations in eight CMIP5 Earth System Models. J. Climate, 26, 8744–8764.

    Article  Google Scholar 

  • Shao Hui, Qian Yongfu, and Wang Qianqian, 1998: Impact of solar radiation diurnal cycle on the simulation results of R15L9. Plateau Meteor., 17, 158–168. (in Chinese)

    Google Scholar 

  • Song, F. F., and T. Zhou, 2014: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean-western Pacific anticyclone teleconnection. J. Climate, 27, 1679–1697.

    Article  Google Scholar 

  • —, —, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596–603.

    Article  Google Scholar 

  • Song, Y., F. Qiao, and Z. Song, 2012: Improved simulation of the South Asian summer monsoon in a coupled GCM with a more realistic ocean mixed layer. J. Atmos. Sci., 69, 1681–1690.

    Article  Google Scholar 

  • Song Zhenya, Qiao Fangli, and Wang Chunzai, 2011: The correctness to the spuriously simulated semi-annual cycle of the sea surface temperature in the equatorial eastern Pacific. Sci. China Earth Sci., 54, 438–444, doi: 10.1007/s11430-011-4176-3.

    Article  Google Scholar 

  • Sperber, K. R., H. Annamalai, I. S. Kang, et al., 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744.

    Article  Google Scholar 

  • Sun Hongchuan, Zhou Guangqing, and Zeng Qingcun, 2012: Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component. Chinese J. Atmos. Sci., 36, 215–233. (in Chinese)

    Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • Tjiputra, J. F., C. Roelandt, M. Bentsen, et al., 2013: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 2, 845–887.

    Article  Google Scholar 

  • Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present day climate with the INMCM4.0 coupled model of the amospheric and oceanic general circulations. Izv. Atmos. Ocean Phys., 46, 448–466.

    Article  Google Scholar 

  • Wang Bin, Zhou Tianjun, Yu Yongqiang, et al., 2008: A perspective on earth system model development. Acta Meteor. Sinica, 66, 857–869. (in Chinese)

    Google Scholar 

  • —, —, —, et al., 2009: A view of earth system model development. Acta Meteor. Sinica, 23, 1–17.

    Article  Google Scholar 

  • Wang Huijun, Zeng Qingcun, and Zhang Xuehong, 1993: The numerical simulation of the climatic change by CO2 doubling. Sci. China (Ser. B), 36, 451–462.

    Google Scholar 

  • —, Xu Yongfu, Zhou Tianjun, et al., 2004: Atmospheric science: A vigorous frontier science. Adv. Earth Sci., 19, 525–532. (in Chinese)

    Google Scholar 

  • Watanabe, S., T. Hajima, K. Sudo, et al., 2011: MIROC-ESM: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. Discuss., 4, 1063–1128, doi:10.5194/gmdd-4-1063-2011.

    Article  Google Scholar 

  • Wu, T. W., R. C. Yu, F. Zhang, et al., 2010: The Bei**g Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123–147.

    Article  Google Scholar 

  • —, W. P. Li, J. J. Ji, et al., 2013a: Global carbon budgets simulated by the Bei**g Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos., 118, 4326–4347, doi: 10.1002/jgrd.50320.

    Article  Google Scholar 

  • Wu Bo and Zhou Tianjun, 2013: Relationships between East Asian-western North Pacific monsoon and ENSO simulated by FGOALS-s2. Adv. Atmos. Sci., 30, 713–725, doi: 10.1007/s00376-013-2103-6.

    Article  Google Scholar 

  • Wu Guoxiong, Zhang Xuehong, Liu Hui, et al., 1997: Global Ocean-Atmosphere-Land system of LASG (GOALS/LASG) and its performance in simulation study. J. Appl. Meteor. Sci., 8(Suppl.), 15–28. (in Chinese)

    Google Scholar 

  • Wu Tongwen, Song Lianchun, Liu ** the short-range operational climate prediction system of China National Climate Center. J. Appl. Meteor. Sci., 24, 533–543. (in Chinese)

    Google Scholar 

  • —, —, Li Wei**, et al., 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 34–56, doi: 10.1007/s13351-014-3041-7.

    Google Scholar 

  • Wu Qizhong, Feng **ming, Dong Wenjie, et al., 2013: Introduction of the CMIP5 experiments carried out by BNU-ESM. Adv. Climate Change Res., 9, 291–294. (in Chinese)

    Google Scholar 

  • **n **aoge, Wu Tongwen, and Zhang Jie, 2012: Introduction of CMIP5 experiments carried out by BCC Climate System Model. Adv. Climate Change Res., 8, 378–382. (in Chinese)

    Google Scholar 

  • Yu Yongqiang and Zhang Xuehong, 1998: A modified air-sea flux anomaly coupling scheme. Chin. Sci. Bull., 43, 866–870.

    Google Scholar 

  • —, Yu Rucong, Zhang Xuehong, et al., 2002: A flexible global coupled climate model. Adv. Atmos. Sci., 19, 169–190.

    Article  Google Scholar 

  • —, Zhang Xuehong, and Guo Yufu, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444–455.

    Article  Google Scholar 

  • —, Zhi Hai, Wang Bing, et al., 2008: Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci., 25, 641–654.

    Article  Google Scholar 

  • Zhang Jie, Laurent Li, Zhou Tianjun, et al., 2013: Variation of surface temperature during the last millennium in a simulation with the FGOALS-g1 climate system model. Adv. Atmos. Sci., 30, 699–712, doi: 10.1007/s00376-013-2178-0.

    Article  Google Scholar 

  • Zhang Lixia and Zhou Tianjun, 2014: An assessment of improvements in global monsoon precipitation simulation in FGOALS-s2. Adv. Atmos. Sci., 31, 165–178.

    Article  Google Scholar 

  • Zhang Xuehong, Guo Yufu, Yuan Chongguang, et al., 1999: The achievements of general circulation model (GCM) in Institute of Atmospheric Physics. The Greenhouse Effects and Climate Change Research: Advances of Joint Research on “Climate Changes Induced by CO 2 ” Between Chinese Academy of Sciences and U.S. Department of Energy. Tao Shiyan, M. R. Ricnes, Chen Banqin, et al., Eds. Ocean Press, Bei**g, 5–13. (in Chinese)

    Google Scholar 

  • —, Shi Guangyu, Liu Hui, et al., 2000: IAP Global Ocean-Atmosphere-Land System Model. Science Press, Bei**g, 251 pp. (in Chinese)

    Google Scholar 

  • Zhou Tianjun, Zhang Xuehong, Yu Yongqiang, et al., 2000: Response of IAP/LASG GOALS model to the coupling of air-sea freshwater exchange. Adv. Atmos. Sci., 17, 473–486.

    Article  Google Scholar 

  • —, —, and Yu Yongqiang, 2001: The coupling procedure of air-sea freshwater exchange in climate system models. Chin. Sci. Bull., 46, 83–85.

    Google Scholar 

  • —, Wang Zaizhi, Yu Rucong, et al., 2005a: The climate system model FGOALS_s using LASG/IAP spectral AGCM SAMIL as its atmospheric component. Acta Meteor. Sinica, 63, 702–715. (in Chinese)

    Google Scholar 

  • —, Yu Rucong, Wang Zaizhi, et al., 2005b: The Atmospheric General System Model SAMIL and Its Associated Coupled Climate System Model FGOALS_s. China Meteorological Press, Bei**g, 288 pp. (in Chinese)

    Google Scholar 

  • —, Yu Yongqiang, Liu Hailong, et al., 2007: Progress in the development and application of climate ocean models and ocean-atmosphere. Adv. Atmos. Sci., 24, 1109–1120.

    Article  Google Scholar 

  • —, Wu Bo, Wen **nyu, et al., 2008: A fast version of LASG/IAP climate system model and its 1000-year control integration. Adv. Atmos. Sci., 25, 655–672.

    Article  Google Scholar 

  • —, Li Bo, Man Wenmin, et al., 2011: A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model. Chin. Sci. Bull., 56, 3028–3041.

    Article  Google Scholar 

  • —, Chen **aolong, Dong Lu, et al., 2014a: Chinese contribution to CMIP5: An overview of five Chinese models’ performances. J. Meteor. Res., 28, doi: 10.1007/s13351-014-4001-y.

  • —, Yu Yongqiang, Liu Yimin, et al., 2014b: Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community. Springer Press, ISBN 978-3-642-41800-6, ISBN 978-3-642-41801-3 (eBook), doi: 10.1007/978-3-642-41801-3, Springer Heidelberg New York Dordrecht London, 483 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Zhou  (周天军).

Additional information

Supported by the National Natural Science Foundation of China (41125017 and 41330423) and LASG/IAP Funding for the Development of Climate System Model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Zou, L., Wu, B. et al. Development of earth/climate system models in China: A review from the Coupled Model Intercomparison Project perspective. J Meteorol Res 28, 762–779 (2014). https://doi.org/10.1007/s13351-014-4501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-4501-9

Key words

Navigation