Log in

The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Fast development of combination of nanotechnology with traditional Chinese medicine (TCM) broadens the field of application of TCM. Besides, it increases the research ideas and contributes to TCM modernization. As expected, TCM will be developed into the nanodrug delivery system by nanotechnology with careful design, which will enhance the medicinal value of TCM to cure and prevent disease based on benefits brought by nanometer scale. Here, formulations, relevant preparations methods, and characteristics of nano-TCM were introduced. In addition, the main excellent performances of nano-TCM were clearly elaborated. What is more, the review was intended to address the studies committed to application of nanotechnology in TCM over the years, including development of Chinese medicine active ingredients, complete TCM, and Chinese herbal compounds based on nanotechnology. Finally, this review discussed the safety of nano-TCM and presented future development trends in the way to realize the modernization of TCM. Overall, using the emerging nanotechnology in TCM is promising to promote progress of TCM in international platform.

Graphical abstract

Recent researches on modernization of traditional Chinese medicine (TCM) urged by nanotechnology are introduced, and formulations, advantages, and applications of nano-TCM are reviewed to provide strong proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li L, Feng Y, Hong Y, Lin X, Shen L. Recent advances in drug delivery system for bioactive glycosides from traditional Chinese medicine. Am J Chin Med. 2018;46(8):1–34. https://doi.org/10.1142/S0192415X18500908.

    Article  CAS  PubMed  Google Scholar 

  2. **a J, Chen J, Zhang Z, Song P, Tang W, Kokudo N. A map describing the association between effective components of traditional Chinese medicine and signaling pathways in cancer cells in vitro and in vivo. Drug Discov Ther. 2014;8(4):139–53. https://doi.org/10.5582/ddt.2014.01032.

    Article  PubMed  Google Scholar 

  3. Puglia C, Lauro MR, Tirendi GG, Fassari GE, Carbone C, Bonina F, Puglisi G. Modern drug delivery strategies applied to natural active compounds. Expert Opin Drug Del. 2017;14(6):755–68. https://doi.org/10.1080/17425247.2017.1234452.

    Article  CAS  Google Scholar 

  4. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 2019;25(1). https://doi.org/10.3390/molecules25010112.

  5. Ma Z, Zhang B, Fan Y, Wang M, Kebebe D, Li J, Liu Z. Traditional Chinese medicine combined with hepatic targeted drug delivery systems: a new strategy for the treatment of liver diseases. Biomed Pharmacother. 2019;117: 109128. https://doi.org/10.1016/j.biopha.2019.109128.

    Article  PubMed  Google Scholar 

  6. Zhang Y, Zou X, Pan Y, Wang J, Luo Y. Introduction of nano Chinese medicine. China Medical Engineering. 2005;13(2):147–8.

    Google Scholar 

  7. Huang Y, Zhao Y, Liu F, Liu S. Nano traditional Chinese medicine: current progresses and future challenges. Curr Drug Targets. 2015;16(13):1548–62. https://doi.org/10.2174/1389450116666150309122334.

    Article  CAS  PubMed  Google Scholar 

  8. Zeng Z, Li X, Zhang S, Huang D. Characterization of nano bamboo charcoal drug delivery system for eucommia ulmoides extract and Its anticancer effect in vitro. Pharmacogn Mag. 2017;13(51):498–503. https://doi.org/10.4103/pm.pm_256_16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang W, Su H, Wen L, Shao A, Yang F, Chen G. Enhanced anticancer effect of Brucea javanica oil by solidified self-microemulsifying drug delivery system. J Drug Deliv Sci Technol. 2018;48:266–73. https://doi.org/10.1016/j.jddst.2018.10.001.

    Article  CAS  Google Scholar 

  10. Liu Y, Feng N. Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interface Sci. 2015;221:60–76. https://doi.org/10.1016/j.cis.2015.04.006.

    Article  CAS  PubMed  Google Scholar 

  11. Gao C, Liang J, Zhu Y, Ling C, Cheng Z, Li R, Qin J, Lu W, Wang J. Menthol-modified casein nanoparticles loading 10-hydroxycamptothecin for glioma targeting therapy. Acta Pharma Sin B. 2019;9(4):843–57. https://doi.org/10.1016/j.apsb.2019.01.006.

    Article  Google Scholar 

  12. Upendra B, Sindhu D, Nagavendra K, Wahid K. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(12). https://doi.org/10.3390/pharmaceutics9020012.

  13. Lee M. Liposomes for enhanced bioavailability of water-insoluble drugs: in vivo evidence and recent approaches. Pharmaceutics. 2020;12(3):264. https://doi.org/10.3390/pharmaceutics12030264.

    Article  CAS  PubMed Central  Google Scholar 

  14. Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, Alitheen NB. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int J Nanomed. 2020;15:2439–83. https://doi.org/10.2147/IJN.S227805.

    Article  CAS  Google Scholar 

  15. Ghasemiyeh P, Samani SM. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288–303. https://doi.org/10.4103/1735-5362.235156.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001.

    Article  CAS  Google Scholar 

  17. Song Y, Li D, Lu Y, Jiang K, Yang Y, Xu Y, Dong L, Yan X, Ling D, Yang X, Yu S. Ferrimagnetic mPEG-b-PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia-chemotherapy. Natl Sci Rev. 2020;7(4):723–36. https://doi.org/10.1093/nsr/nwz201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Horacio C, Kazunori K. Progress of drug-loaded polymeric micelles into clinical studies. J Control Release. 2014;190:465–76. https://doi.org/10.1016/j.jconrel.2014.06.042.

    Article  CAS  Google Scholar 

  19. Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34(10):2565–75. https://doi.org/10.1016/j.biomaterials.2012.12.043.

    Article  CAS  PubMed  Google Scholar 

  20. Jia L, Shen J, Li Z, Zhang D, Zhang Q, Liu G, Zheng D, Tian X. In vitro and in vivo evaluation of paclitaxel-loaded mesoporous silica nanoparticles with three pore sizes. Int J Pharm. 2013;445(1):12–19. https://doi.org/10.1016/j.ijpharm.2013.01.058.

  21. Liu T, Yu X, Yin H, Möschwitzer JP. Advanced modification of drug nanocrystals by using novel fabrication and downstream approaches for tailor-made drug delivery. Drug Deliv. 2019;26(1):1092–103. https://doi.org/10.1080/10717544.2019.1682721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peltonen L. Design space and QbD approach for production of drug nanocrystals by wet media milling techniques. Pharmaceutics. 2018;10(3):104. https://doi.org/10.3390/pharmaceutics10030104.

    Article  CAS  PubMed Central  Google Scholar 

  23. Gigliobianco MR, Casadidio C, Censi R, Di Martino P. Nanocrystals of poorly Soluble drugs: drug bioavailability and physicochemical stability. Pharmaceutics. 2018;10(3):134. https://doi.org/10.3390/pharmaceutics10030134.

    Article  CAS  PubMed Central  Google Scholar 

  24. Li Z, Wang L, Li Y, Feng Y, Feng W. Frontiers in carbon dots: design, properties and applications. Mater Chem Front. 2019;3:2571–601. https://doi.org/10.1039/C9QM00415G.

    Article  CAS  Google Scholar 

  25. Ren Q, Li M, Deng Y, Lu A, Lu J. Triptolide delivery: nanotechnology-based carrier systems to enhance efficacy and limit toxicity. Pharmacol Res. 2021;165:105377. https://doi.org/10.1016/j.phrs.2020.105377.

  26. Qu D, He J, Liu C, Zhou J, Chen Y. Triterpene-loaded microemulsion using Coix lacryma-jobi seed extract as oil phase for enhanced antitumor efficacy: preparation and in vivo evaluation. Int J Nanomed. 2013;(9):109–19. https://doi.org/10.2147/IJN.S54796.

  27. Hsu C-Y, Wang P-W, Alalaiwe A, Lin Z-C, Fang J-Y. Use of lipid nanocarriers to improve oral delivery of vitamins. Nutrients. 2019;11(1). https://doi.org/10.3390/nu11010068.

  28. Babadi D, Dadashzadeh S, Osouli M, Abbasian Z, Daryabari MS, Sadrai S, Haeri A. Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. J Drug Delivery Sci Technol. 2021;62:102324. https://doi.org/10.1016/j.jddst.2021.102324.

  29. Yan G, Wang Y, Han X, Zhang Q, **e H, Chen J, Ji D, Mao C, Lu T. A modern technology applied in traditional Chinese medicine: progress and future of the nanotechnology in TCM. Dose Response. 2019;17(3):1–8. https://doi.org/10.1177/1559325819872854.

    Article  CAS  Google Scholar 

  30. Wu W, Wang L, Wang L, Zu Y, Wang S, Liu P, Zhao X. Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells. Int J Nanomed. 2018;13:5469–83. https://doi.org/10.2147/IJN.S178416.

    Article  CAS  Google Scholar 

  31. Ji Y, Zhou X, Guo R, Nie F, Nie X. Honokiol nanosuspensions: preparation, in vitro and in vivo evaluation. Acta Pharma Sin. 2018;53(1):133–40. https://doi.org/10.16438/j.0513-4870.2017-0766.

  32. Zou R, Yao H, Hu J, Yin C, Wang L, Chen X, Pan Y, Xu H. Preparation and quality evaluation of ursolic acid nanoemulsion. Central South Pharmacy. 2019;17(6):830–5.

    Google Scholar 

  33. Tayemeh MB, Kalbassi MR, Paknejad H, Joo HS. Dietary nanoencapsulated quercetin homeostated transcription of redox-status orchestrating genes in zebrafish (Danio rerio) exposed to silver nanoparticles. Environ Res. 2020;185:109477. https://doi.org/10.1016/j.envres.2020.109477.

  34. Hamano N, Böttger R, Lee SE, Yang Y, Kulkarni JA, Ip S, Cullis PR, Li S-D. Robust microfluidic technology and new lipid composition for fabrication of curcumin-loaded liposomes: effect on the anticancer activity and safety of Cisplatin. Mol Pharm. 2019;16(9):3957–67. https://doi.org/10.1021/acs.molpharmaceut.9b00583.

    Article  CAS  PubMed  Google Scholar 

  35. Gao S, Basu S, Yang G, Deb A, Hu M. Oral bioavailability challenges of natural products used in cancer chemoprevention. Prog Chem. 2013;25(9):1553–74.

    CAS  Google Scholar 

  36. Li Y, Hu X, Lu X, Liao D, Tang T, Wu J, **ang D. Nanoemulsion-based delivery system for enhanced oral bioavailability and caco-2 cell monolayers permeability of berberine hydrochloride. Drug Deliv. 2017;24(1):1868–73. https://doi.org/10.1080/10717544.2017.1410257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ding P, Shen H, Wang J, Ju J. Improved oral bioavailability of magnolol by using a binary mixed micelle system. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(2):668–74. https://doi.org/10.1080/21691401.2018.1468339.

    Article  CAS  PubMed  Google Scholar 

  38. Pang J, Liu X, Shen B, Shen C, Lian W, Liu J, Hu C, Zhong R, Xu R, Yuan H. Preparation of isopsoralen loaded nanostructured carrier and its in vitro transdermal permeation characteristics. China J Chin Materia Med. 2017;42(13):2473–78. https://doi.org/10.19540/j.cnki.cjcmm.20170507.001.

  39. Rathore C, Upadhyay N, Kaundal R, Dwivedi RP, Rahatekar S, John A, Dua K, Tambuwala MM, Jain S, Chaudari D, Negi P. Enhanced oral bioavailability and hepatoprotective activity of thymoquinone in the form of phospholipidic nano-constructs. Expert Opin Drug Del. 2020;17(2):237–53. https://doi.org/10.1080/17425247.2020.1716728.

    Article  CAS  Google Scholar 

  40. Bagheri M, Fens MH, Kleijn TG, Capomaccio RB, Mehn D, Krawczyk PM, Scutigliani EM, Gurinov A, Baldus M, van Kronenburg NCH, Kok RJ, Heger M, van Nostrum CF, Hennink WE. In vitro and in vivo studies on HPMA-based polymeric micelles loaded with curcumin. Mol Pharm. 2021. https://doi.org/10.1021/acs.molpharmaceut.0c01114.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yan S, Hu J, Wang X, Shi M, Zhang J. Pharmacokinetics and in situ intestinal absorption of evodiamine complex water-in-oil nanoemulation. Acad J Second Mil Univ. 2017;38(2):249–52.

    CAS  Google Scholar 

  42. Huang D, Sun L, Huang L, Chen Y. Nanodrug delivery systems modulate tumor vessels to increase the enhanced permeability and retention effect. J Pers Med. 2021;11:124. https://doi.org/10.3390/jpm11020124.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bertrand N, Wu J, Xu X, Kamaly N, Omid C Farokhzad. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Del Rev. 2014;66:2–25. https://doi.org/10.1016/j.addr.2013.11.009.

  44. Faisal R, Hajra Z, **nru Y, Asifullah K, Jun W, Liang G. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B. 2019;7(48):7639–55. https://doi.org/10.1039/C9TB01842E.

    Article  Google Scholar 

  45. Lakkireddy HR, Bazile DV. Nano-carriers for drug routeing – towards a new era. J Drug Targeting. 2019;27(5–6):525–41. https://doi.org/10.1080/1061186X.2018.1561891.

    Article  CAS  Google Scholar 

  46. Su Y, Huang N, Chen D, Zhang L, Dong X, Sun Y, Zhu X, Zhang F, Gao J, Wang Y, Fan K, Lo P, Li W, Ling C. Successful in vivo hyperthermal therapy toward breast cancer by Chinese medicine shikonin-loaded thermosensitive micelle. Int J Nanomed. 2017;12:4019–35. https://doi.org/10.2147/IJN.S132639.

    Article  CAS  Google Scholar 

  47. Siemer S, Wunsch D, Khamis A, Lu Q, Scherberich A, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, Gribko A. Nano meets micro-translational nanotechnology in medicine: nano-based applications for early tumor detection and therapy. Nanomaterials (Basel). 2020;10(2):383. https://doi.org/10.3390/nano10020383.

    Article  CAS  Google Scholar 

  48. You X, Kang Y, Chen X, Hollett G, Zhao W, Wu J. Polymeric nanoparticles for colon cancer therapy: overview and perspectives. J Mater Chem B. 2016;4(48):7779–92. https://doi.org/10.1039/C6TB01925K.

    Article  CAS  PubMed  Google Scholar 

  49. Muley H, Fadó R, Rodríguez-Rodríguez R, Casals N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem Pharmacol. 2020;177: 113959. https://doi.org/10.1016/j.bcp.2020.113959.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Y, Shen Y, Liao M, Mao X, Mi G, You C, Guo Q, Li W, Wang X, Lin N, Webster TJ. Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Nanomedicine. 2018;15(1):86–97. https://doi.org/10.1016/j.nano.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  51. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release. 2017;264:306–32. https://doi.org/10.1016/j.jconrel.2017.08.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mulvihill JJ, Cunnane EM, Ross AM, Duskey JT, Tosi G, Grabrucker AM. Drug delivery across the blood-brain barrier: recent advances in the use of nanocarriers. Nanomedicine (Lond). 2020;15(2):205–14. https://doi.org/10.2217/nnm-2019-0367.

    Article  CAS  Google Scholar 

  53. Moura RP, Martins C, Pinto S, Sousa F, Sarmento B. Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opin Drug Del. 2019;16(3):271–85. https://doi.org/10.1080/17425247.2019.1583205.

    Article  CAS  Google Scholar 

  54. Furtado D, Bjornmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater. 2018;30(46): e1801362. https://doi.org/10.1002/adma.201801362.

    Article  CAS  PubMed  Google Scholar 

  55. Long Y, Yang Q, **ang Y, Zhang Y, Wan J, Liu S, Li N, Peng W. Nose to brain drug delivery—a promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res. 2020:104795. https://doi.org/10.1016/j.phrs.2020.104795.

  56. Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Patel RJ, Ajazuddin, Ravichandiran V, Murty US, Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release. 2020;321:372–415. https://doi.org/10.1016/j.jconrel.2020.02.020.

  57. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52. https://doi.org/10.1016/j.lfs.2017.12.025.

  58. Liang J, Gao C, Zhu Y, Ling C, Wang Q, Huang Y, Qin j, Wang J, Lu W, Wang J. Natural brain penetration enhancer-modified albumin nanoparticles for glioma targeting delivery. ACS Appl Mater Inter. 2018;10(36):30201–13. https://doi.org/10.1021/acsami.8b11782.

  59. **ang Y, Long Y, Yang Q, Zheng C, Cui MQ, Ci ZM, Lv XM, Li N, Zhang R. Pharmacokinetics, pharmacodynamics and toxicity of Baicalin liposome on cerebral ischemia reperfusion injury rats via intranasal administration. Brain Res. 2020;1726: 146503. https://doi.org/10.1016/j.brainres.2019.146503.

    Article  CAS  PubMed  Google Scholar 

  60. Li N, Feng L, Tan Y, **ang Y, Zhang R, Yang M. Preparation, characterization, pharmacokinetics and biodistribution of baicalin-loaded liposome on cerebral ischemia-reperfusion after i.v. administration in rats. Molecules. 2018;23(7):1747.

  61. Kumar P, Sharma G, Kumar R, Singh B, Malik R, Katare OP, Raza K. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: biochemical, pharmacokinetic and biodistribution evidences. Int J Pharm. 2016;515(1–2):307–14. https://doi.org/10.1016/j.ijpharm.2016.10.024.

    Article  CAS  PubMed  Google Scholar 

  62. Tsai M, Wu P, Huang Y, Chang J, Lin C, Tsai Y, Fang J. Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. Int J Pharm. 2012;423(2):461–70. https://doi.org/10.1016/j.ijpharm.2011.12.009.

    Article  CAS  PubMed  Google Scholar 

  63. Lu X, Dong J, Zheng D, Li X, Ding D, Xu H. Reperfusion combined with intraarterial administration of resveratrol-loaded nanoparticles improved cerebral ischemia–reperfusion injury in rats. Nanomed Nanotechnol Biol Med. 2020;28:102208. https://doi.org/10.1016/j.nano.2020.102208.

  64. Gao C, Wang Y, Sun J, Han Y, Wei Gong , Li Y, Feng Y, Wang H, Yang M, Li Z, Yang Y, Gao C. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer's disease mice. Acta Biomater. 2020;108:285–99. https://doi.org/10.1016/j.actbio.2020.03.029.

  65. Chen T, Li C, Li Y, Yi X, Wang R, Lee SM, Zheng Y. Small-sized mPEG-PLGA nanoparticles of Schisantherin A with sustained release for enhanced brain uptake and anti-parkinsonian activity. ACS Appl Mater Interfaces. 2017;9(11):9516–27. https://doi.org/10.1021/acsami.7b01171.

    Article  CAS  PubMed  Google Scholar 

  66. Shao J, Fang Y, Zhao R, Chen F, Yang M, Jiang J, Chen Z, Yuan X, Jia L. Evolution from small molecule to nano-drug delivery systems: an emerging approach for cancer therapy of ursolic acid. Asian J Pharm Sci. 2020. https://doi.org/10.1016/j.ajps.2020.03.001.

  67. Zangabad PS, Mirkiani S, Shahsavari S, Masoudi B, Masroor M, Hamed H, Jafari Z, Taghipour YD, Hashemi H, Karimi M, Hamblin MR. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol Rev. 2018;7(1):95–122. https://doi.org/10.1515/ntrev-2017-0154.

    Article  CAS  PubMed  Google Scholar 

  68. Liang Y, Ding C, Luo P, Zhang Z, Wen L, Chen G. A two-dimensional g-C3N4 nanosheet for high loading and sustained release of water-soluble drug salvianolic acid B. Acta Pharma Sin. 2020;55(6):1296 −305. https://doi.org/10.16438/j.0513-4870.2019-0878.

  69. Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1–18. https://doi.org/10.1016/j.jare.2018.06.005.

    Article  CAS  PubMed  Google Scholar 

  70. Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–501. https://doi.org/10.1039/c5cs00798d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang Z, Cheng W, Pan YF, Jia L. An anticancer agent-loaded PLGA nanomedicine with glutathione-response and targeted delivery for the treatment of lung cancer. J Mater Chem B. 2020;8(4):655–65. https://doi.org/10.1039/c9tb02284h.

    Article  CAS  PubMed  Google Scholar 

  72. Guo H, Ma C, Zheng W, Luo Y, Li C, Li X, Ma X, Feng C, Zhang T, Han Y, Luo Z, Zhan Y, Li R, Wang L, Jiang J. Dual-stimuli-responsive gut microbiota-targeting berberine-CS/PT-NPs improved metabolic status in obese hamsters. Adv Funct Mater. 2019;19:1808197. https://doi.org/10.1002/adfm.201910337.

    Article  CAS  Google Scholar 

  73. Dang Y-J, Zhu C-Y. Oral bioavailability of cantharidin-loaded solid lipid nanoparticles. Chin Med. 2013;8(1):1. https://doi.org/10.1186/1749-8546-8-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang B, Yang S, Guo D. The quest for the modernization and internationalization of traditional Chinese medicine. Engineering. 2019;5(1):1–2. https://doi.org/10.1016/j.eng.2019.01.002.

    Article  CAS  Google Scholar 

  75. Zhao J, Yang J, **e Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int J Pharm. 2019;570: 118642. https://doi.org/10.1016/j.ijpharm.2019.118642.

    Article  CAS  PubMed  Google Scholar 

  76. Li J, Chen J, Cai BC, Tao Y. Preparation, characterization and tissue distribution of brucine stealth liposomes with different lipid composition. Pharm Dev Technol. 2013;18(4):772–8.

    Article  CAS  PubMed  Google Scholar 

  77. Wang YH, Wang R, Qi X, Li WN, Guan QX, Wang R, Li XY, Li YJ, Yang ZX, Feng Y. Novel transethosomes for the delivery of brucine and strychnine: formulation optimization, characterization and in vitro evaluation in hepatoma cells. J Drug Deliv Sci Technol. 2021:102425. https://doi.org/10.1016/j.jddst.2021.102425.

  78. Sun S, Guan Q, Shang E, **ao H, Yu X, Shi L, Zhao C, Guo Y, Lv S, Li Y. Hyaluronic acid-coated nanostructured lipid carriers for loading multiple traditional Chinese medicine components for liver cancer treatment. Pak J Pharm Sci. 2020;33:109–19.

    CAS  PubMed  Google Scholar 

  79. Zhang Y, Ding C, Wen L, Chen G. Core-shell magnetic poly (lactic-co-glycolic acid) nanosystem for tempo-spatially controlled release kinetics of multiple components of traditional Chinese medicine formula. Acta Pharma Sin. 2018;53(12):1968−75. https://doi.org/10.16438/j.0513-4870.2018-0333.

  80. Hussain M. Molecular dynamics simulations of glycyrrhizic acid aggregates as drug-carriers for paclitaxel. Curr Drug Deliv. 2019;16(7):618–27. https://doi.org/10.2174/1567201816666190313155117.

    Article  CAS  PubMed  Google Scholar 

  81. Shelepova EA, Kim AV, Voloshin VP, Medvedev NN. Intermolecular voids in lipid bilayers in the presence of glycyrrhizic acid. J Phys Chem B. 2018;122(43):9938–46. https://doi.org/10.1021/acs.jpcb.8b07989.

    Article  CAS  PubMed  Google Scholar 

  82. Selyutina OY, Polyakov NE, Korneev DV, Zaitsev BN. Influence of glycyrrhizin on permeability and elasticity of cell membrane: perspectives for drugs delivery. Drug Deliv. 2016;23(3):858–65. https://doi.org/10.3109/10717544.2014.919544.

    Article  CAS  PubMed  Google Scholar 

  83. Guan J, Chen W, Yang M, Wu E, Qian J, Zhan C. Regulation of in vivo delivery of nanomedicines by herbal medicines. Adv Drug Del Rev. 2021;174:210–28. https://doi.org/10.1016/j.addr.2021.04.015.

  84. Hong C, Wang D, Liang J, Guo Y, Zhu Y, **a J, Qin J, Zhan H, Wang J. Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics. 2019;9(15):4437–49. https://doi.org/10.7150/thno.34953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang Y, Zhu J, Lin X, Hong Y, Feng Y, Shen L. Potential of fatty oils from traditional Chinese medicine in cancer therapy: a review for phytochemical, pharmacological and clinical studies. Am J Chin Med. 2019;2:1–24.

    CAS  Google Scholar 

  86. Qu D, Sun W, Liu M, Liu Y, Zhou J, Chen Y. Bitargeted microemulsions based on coix seed ingredients for enhanced hepatic tumor delivery and synergistic therapy. Int J Pharm. 2016;503(1–2):90–101. https://doi.org/10.1016/j.ijpharm.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  87. Zhu N, Zhang L, Wang F. Overview of application of nanotechnology in herbal polysaccharides development. Chin J of New Drugs. 2017;26(1):60–5.

    Google Scholar 

  88. Ma Y, He S, Ma X, Hong T, Li Z, Park K, Wang W. Silymarin-loaded nanoparticles based on stearic acid-modified bletilla striata polysaccharide for hepatic targeting. Molecules. 2016;21(3):265. https://doi.org/10.3390/molecules21030265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao W, Zhang Q, Wang Y, Hou J. Preparation, characterization and in vitro antitumor effect of cholesterol succinyl Bletilla striata polysaccharide-loaded paclitaxel nanoparticles. Biomed Res. 2017;21:9638–46.

    Google Scholar 

  90. Kemp JA, Shim MS, Heo CY, Kwon YJ. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Del Rev. 2016;98:3–18. https://doi.org/10.1016/j.addr.2015.10.019.

  91. Ma Z, Fan Y, Wu Y, Kebebe D, Zhang B, Lu P, Pi J, Liu Z. Traditional Chinese medicine- combination therapies utilizing nanotechnology-based targeted delivery systems: a new strategy for antitumor treatment. Int J Nanomed. 2019;14:2029–53. https://doi.org/10.2147/ijn.S197889.

    Article  CAS  Google Scholar 

  92. Zhang M, Liu E, Cui Y, Huang Y. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med. 2017;14(3):212–27. https://doi.org/10.20892/j.issn.2095-3941.2017.0054.

  93. Chen M, Zhou X, Chen R, Wang J, Ye RD, Wang Y, Wu C, Mahato RI. Nano-carriers for delivery and targeting of active ingredients of Chinese medicine for hepatocellular carcinoma therapy. Mater Today. 2018. https://doi.org/10.1016/j.mattod.2018.10.040.

    Article  Google Scholar 

  94. Zhao R, Li T, Zheng G, jiang K, Fan L, Shao J. Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials. 2017;143(2):1–16. https://doi.org/10.1016/j.biomaterials.2017.07.030.

  95. Khan I, Joshi G, Nakhate KT, Ajazuddin, Kumar R, Gupta U. Nano-co-delivery of berberine and anticancer drug using PLGA nanoparticles: exploration of better anticancer activity and in vivo kinetics. Pharm Res. 2019;36(10):149. https://doi.org/10.1007/s11095-019-2677-5.

  96. Kartal-Yandim M, Adan-Gokbulut A, Baran Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit Rev Biotechnol. 2015;36(4):716–26. https://doi.org/10.3109/07388551.2015.1015957.

    Article  CAS  PubMed  Google Scholar 

  97. Wang X, Deng R, Lu Y, Xu Q, Yan M. Gambogic acid as a non-competitive inhibitor of ATP-binding cassette transporter B1 reverses the multidrug resistance of human epithelial cancers by promoting ATP-binding cassette transporter B1 protein degradation. Basic Clin Pharmacol Toxicol. 2013;112(1):25–33. https://doi.org/10.1111/j.1742-7843.2012.00921.x.

    Article  CAS  PubMed  Google Scholar 

  98. Xu Y, Wang C, Ding Y, Wang Y, Liu K, Tian Y, Gao M, Li Z, Zhang J, Li L. Nanoparticles with optimal Ratiometric co-delivery of docetaxel with gambogic acid for treatment of multidrug-resistant breast cancer. J Biomed Nanotechnol. 2016;12(9):1774–81. https://doi.org/10.1166/jbn.2016.2282.

    Article  CAS  PubMed  Google Scholar 

  99. Ashrafizadeh M, Zarrabi A, Hashemi F, Moghadam ER, Hashemi F, Entezari M, Hushmandi K, Mohammadinejad R, Najafi M. Curcumin in cancer therapy: a novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci. 2020;256: 117984. https://doi.org/10.1016/j.lfs.2020.117984.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang D, Xu Q, Wang N, Yang Y, liu J, Yu g, Yang X, Xu H, Wang H. A complex micellar system co-delivering curcumin with doxorubicin against cardiotoxicity and tumor growth. Int J Nanomed. 2018;13:4549–61. https://doi.org/10.2147/IJN.S170067.

  101. Ma W, Guo Q, Li Y, Wang X, Wang J, Tu P. Co-assembly of doxorubicin and curcumin targeted micelles for synergistic delivery and improving anti-tumor efficacy. Eur J Pharm Biopharm. 2017;112:209–23. https://doi.org/10.1016/j.ejpb.2016.11.033.

    Article  CAS  PubMed  Google Scholar 

  102. Li M, Azad M, Davé R, Bilgili E. Nanomilling of drugs for bioavailability enhancement: a holistic formulation-process perspective. Pharmaceutics. 2016;8(2):17. https://doi.org/10.3390/pharmaceutics8020017.

    Article  CAS  PubMed Central  Google Scholar 

  103. Williamson EM, Lorenc A, Booker A, Robinson N. The rise of traditional Chinese medicine and its materia medica: a comparison of the frequency and safety of materials and species used in Europe and China. J Ethnopharmacol. 2013;149(2):453–62. https://doi.org/10.1016/j.jep.2013.06.050.

    Article  PubMed  Google Scholar 

  104. Dan S, Yan L, Ronggang X, Wei Z, Lijun W, Zhiran Z, Zhongyang L, Chao Q, Baoli X, **aobo W. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells. Int J Nanomed. 2016;11:5823–35. https://doi.org/10.2147/IJN.S115158.

    Article  Google Scholar 

  105. An Y, Fang N, ZiyuWang, Zhang D. Preparation and characterization of realgar nanoparticles and their inhibitory effect on rat glioma cells. Int J Nanomed. 2011;6:3187–94. https://doi.org/10.2147/IJN.S26237.

  106. Tian Y, Wang X, ** R, Pan W, Jiang S, Li Z, Zhao Y, Gao G, Liu D. Enhanced antitumor activity of realgar mediated by milling it to nanosize. Int J Nanomed. 2014;9:745–57. https://doi.org/10.2147/IJN.S56391.

  107. Wang D, Wang L, Xu R, Wu X, Li Y. Antiviral activity of nano-realgar against herpes simplex virus Type II in vitro. J Cent South Univ (Med Sci). 2019;44(10):1143–50.

    Google Scholar 

  108. Wang M, Fuerhati W, Wang C, Xu W. Study on realgar nanoparticles inhibition of adenovirus replication at the gene level. Chin J Exp Clin Virok. 2013;27(5):357–9. https://doi.org/10.3760/ema.j.issn.1003-9279.2013.05.012.

    Article  CAS  Google Scholar 

  109. Miao C, Zhao H, Wang C, Wang H, Xu W. Study on the effect of realgar nanoparticles on reducing the respiratory syncytial virus type A (RSV-a) replication in vitro. Chin J Virology. 2012;28(1):45–50. https://doi.org/10.13242/j.cnki.bingduxuebao.002240.

  110. Wang D, Zhou L, Zeng P, Li Z. Preparation of purified realgar nanoparticles. Central South Pharmacy. 2014;12(3):234–7. https://doi.org/10.7539/j.issn.1672-2981.2014.03.012.

    Article  CAS  Google Scholar 

  111. Cheng P, Fang Y, **a Y, Da J, Da G, Shang X, Zhang X. Discussion of processing methods of nano-realgar. Chin Exp Tradit Med Formulae. 2016;22(22):22–25. https://doi.org/10.13422/j.cnki.syfjx.2016220022.

  112. Zhan X, Zhao F. Realgar nanoparticles inhibiting the proliferation of tumor cells in vitro and in vivo. Chin J Cancer Prev Treat. 2015;22(3):184–88. https://doi.org/10.16073/j.cnki.cjcpt.2015.03.006.

  113. Wang Y, Hui K, **aoman L, Juan L, Wei X, Yafan Z, Yaxue Z, Yihe Z, Yan Z, Huihua Q. Novel carbon dots derived from Cirsii Japonici Herba Carbonisata and their haemostatic effect. J Biomed Nanotechnol. 2018;14(9):1635–44. https://doi.org/10.1166/jbn.2018.2613.

    Article  CAS  PubMed  Google Scholar 

  114. Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale. 2015;7(5):1586–95. https://doi.org/10.1039/c4nr05712k.

    Article  CAS  PubMed  Google Scholar 

  115. Chen Z, Ye S, Yang Y, Li Z. A review on charred traditional Chinese herbs: carbonization to yield a haemostatic effect. Pharm Biol. 2019;57(1):498–506. https://doi.org/10.1080/13880209.2019.1645700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Luo J, Zhang M, Cheng J, Wu S, **ong W, Kong H, Zhao Y, Qu H. Hemostatic effect of novel carbon dots derived from Cirsium setosum Carbonisata. RSC Adv. 2018;8(66):37707–14. https://doi.org/10.1039/C8RA06340K.

    Article  CAS  Google Scholar 

  117. Cheng J, Zhang M, Sun Z, Lu F, **ong W. Hemostatic and hepatoprotective bioactivity of Junci Medulla Carbonisata-derived carbon dots. Nanomedicine (Lond). 2019;14(4):431–46. https://doi.org/10.2217/nnm-2018-0285.

    Article  CAS  Google Scholar 

  118. Yan X, Zhao Y, Luo J, **ong W, Liu X, Cheng J, Wang Y, Zhang M, Qu H. Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots. J Nanobiotechnol. 2017;15(1):60. https://doi.org/10.1186/s12951-017-0296-z.

    Article  CAS  Google Scholar 

  119. Liu X, Wang Y, Yan X, Zhang M, Zhang Y, Cheng J, Lu F, Qu H, Wang Q, Zhao Y. Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect. Nanomedicine (Lond.). 2018;13(4):391–405. https://doi.org/10.2217/nnm-2017-0297.

  120. Sun Z, Lu F, Cheng J, Zhang M, Zhang Y, **ong W, Zhao Y, Qu H. Haemostatic bioactivity of novel Schizonepetae Spica Carbonisata-derived carbon dots via platelet counts elevation. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(sup3):1–10.

    Article  Google Scholar 

  121. Wang S, Zhang Y, Kong H, Zhang M, Cheng J, Wang X, Lu F, Qu H, Zhao Y. Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots. Nanomedicine. 2019;14(22):2925–39. https://doi.org/10.2217/nnm-2019-0255.

    Article  CAS  PubMed  Google Scholar 

  122. Sun Z, Lu F, Cheng J, Zhang M, Zhu Y, Zhang Y, Kong H, Qu H, Zhao Y. Hypoglycemic bioactivity of novel eco-friendly carbon dots derived from traditional Chinese medicine. J Biomed Nanotechnol. 2018;14(12):2146–55. https://doi.org/10.1166/jbn.2018.2653.

    Article  CAS  PubMed  Google Scholar 

  123. Li C, Ou C, Huang C, Wu W, Chen Y, Lin T, Ho L, Wang C, Shih C, Zhou H, Lee Y, Tzeng W, Chiou T, Chu S, Cang J, Chang H. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J Mater Chem B. 2014;2(28):4564–71. https://doi.org/10.1039/C4TB00216D.

    Article  CAS  PubMed  Google Scholar 

  124. Weng Q, Cai X, Zhang F, Wang S. Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin. Food Chem. 2019;274:796–802. https://doi.org/10.1016/j.foodchem.2018.09.059.

    Article  CAS  PubMed  Google Scholar 

  125. Kim JE, Park YJ. High paclitaxel-loaded and tumor cell-targeting hyaluronan-coated nanoemulsions. Colloids Surf B Biointerfaces. 2017;1:362–72.

    Article  Google Scholar 

  126. Zhou J, Zhang J, Gao G, Wang H, He X, Chen T, Ke L, Rao P, Wang Q. Boiling licorice produces self-assembled protein nanoparticles: a novel source of bioactive nanomaterials. J Agric Food Chem. 2019;67:9354–61. https://doi.org/10.1021/acs.jafc.9b03208.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang C, Zhao R, Yan W, Wang H, Jia M, Zhu N, Zhu Y, Zhang Y, Wang P, Lei H. Compositions, formation mechanism, and neuroprotective effect of compound precipitation from the traditional Chinese prescription Huang-Lian-Jie-Du-Tang. Molecules. 2016;21:1094. https://doi.org/10.3390/molecules21081094.

    Article  CAS  PubMed Central  Google Scholar 

  128. Lü S, Su H, Sun S, Guo Y, Liu T, Yang P, Li Y. Isolation and characterization of nanometre aggregates from a Bai-Hu-Tang decoction and their antipyretic effect. Sci Rep. 2018;8(1):12209. https://doi.org/10.1038/s41598-018-30690-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhuang Y, Yan J, Zhu W, Chen L, Liang D, Xu X. Can the aggregation be a new approach for understanding the mechanism of Traditional Chinese Medicine? J Ethnopharmacol. 2008;117(2):378–84. https://doi.org/10.1016/j.jep.2008.02.017.

    Article  PubMed  Google Scholar 

  130. Zhou J, Gao G, Chu Q, Wang H, Rao P, Ke L. Chromatographic isolation of nanoparticles from Ma-**ng-Shi-Gan-Tang decoction and their characterization. J Ethnopharmacol. 2014;151(3):1116–23. https://doi.org/10.1016/j.jep.2013.12.029.

    Article  CAS  PubMed  Google Scholar 

  131. Nassiri Koopaei N, Abdollahi M. Opportunities and obstacles to the development of nanopharmaceuticals for human use. Daru : Journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2016;24(1):23–23. https://doi.org/10.1186/s40199-016-0163-8.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Del Rev. 2019;144:112–32. https://doi.org/10.1016/j.addr.2019.07.006.

    Article  CAS  Google Scholar 

  133. Nel A, **a T, Lutz Mädler, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7. https://doi.org/10.1126/science.1114397.

  134. Zhang X, Xu Z, Li Y, Dou J, Chang X, Ma J, Li Q, Liu Z. Quality and safety evaluation of syringopicroside nano-targeted freeze-dried powder resistant to HBV active ingredients. Guiding J Tradit Chin Med Pharm. 2019;25(20):56–59. https://doi.org/10.13862/j.cnki.cn43-1446/r.2019.20.015.

  135. **a P, Ma X, Wu G, Li Y, Fan Q, Zhao L. Preparation and evaluation of quality and security of gentiopicroside nanoemulsion. Nat Prod Res Dev. 2017;(29):1824–30. https://doi.org/10.16333/j.1001-6880.2017.11.003.

  136. Ji X, Lu W, Wu K, Cho WC. Influencing factors of the pharmacokinetic characters on nanopharmaceutics. Pharm Nanotechnol. 2017;5(1):24–31. https://doi.org/10.2174/2211738505666161214142755.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang Y, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–48. https://doi.org/10.1016/j.jconrel.2016.01.020.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Fundamental Research Funds for the Central public welfare research institutes of China Academy of Chinese Medical Sciences [ZZ11-042, ZXKT17044], the National Natural Science Foundation of China [81873010, 81703708], and project of Bei**g for traditional Chinese Medicine Processing Technology inheritance base.

Author information

Authors and Affiliations

Authors

Contributions

Yinghao Zheng: Investigation, Writing—original draft. Yun Wang: Supervision, Reviewing. Mengyu **a: Supervision, Writing. Ya Gao: Resources. Lan Zhang: Visualization. Yanan Song: Resources, Supervision. Cun Zhang: Conceptualization, Supervision.

Ethics declarations

Ethics approval and consent to participate

No animal or human studies were carried out by the authors for this article.

Consent for publication

All authors have given approval to publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Wang, Y., **a, M. et al. The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems. Drug Deliv. and Transl. Res. 12, 1306–1325 (2022). https://doi.org/10.1007/s13346-021-01029-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01029-x

Keywords

Navigation