Log in

The effects of superparamagnetic iron oxide nanoparticles-labeled mesenchymal stem cells in the presence of a magnetic field on attenuation of injury after heart failure

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

A Correction to this article was published on 22 February 2024

This article has been updated

Abstract

Migration of stem cells after transplantation reduces their therapeutic effects. In this study, we hypothesized that superparamagnetic iron oxide nanoparticles (SPION)-labeled mesenchymal stem cells (MSCs) in the presence of magnetic field may have a capability to increase regenerative ability after heart failure (HF). A rat model of ISO (isoproterenol)-HF was established to investigate the effects of SPION-labeled MSCs on tissue regeneration in the presence and absence of magnetic field. Hydrodynamic size, shape, and formation of chemical bonds between SPION and polyethylene glycol (PEG) were measured using dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). The MRI was used to monitor SPION-labeled MSCs in vivo. Cell and tissue uptake of nanoparticles were determined by Prussian blue staining, atomic absorption spectroscopy (AAS), and inductively coupled plasma spectroscopy (ICP). Purity of the MSCs, heart function, myocardial fibrosis, and histologic damage were evaluated using flow-cytometry, echocardiography, Masson’s trichrome, and H&E staining respectively. Various spectroscopic and microscopic analyses revealed that hydrodynamic size of SPION was 40 ± 2 and their shape was spherical. FTIR confirmed the presence of PEG on the surface of nanoparticles. The presence of magnetic field significantly increased cell homing. Highly purified MSCs population was detected by flow-cytometry. Using SPION-labeled MSCs in the presence of magnetic field markedly improved heart function and myocardial hypertrophy and reduced fibrosis (p < 0.05). Collectively, our results demonstrated that SPION-labeled MSCs in the presence of magnetic field might contribute to regeneration after HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

Abbreviations

SPION:

Superparamagnetic iron oxide nanoparticles

MSCs:

Mesenchymal stem cells

hAMSCs:

Human amniotic mesenchymal stromal cells

DLS:

Dynamic light scattering

HF:

Heart failure

ISO:

Isoproterenol

ISO-HF:

ISO-induced heart failure

TEM:

Transmission electron microscopy

FTIR:

Fourier-transform infrared spectroscopy

2D:

Two dimensional

PEG:

Polyethylene glycol

ICP:

Inductively coupled plasma spectroscopy

MRI:

Magnetic resonance imaging

AAS:

Atomic absorption spectroscopy

VSM:

Vibrating sample magnetometer

EF:

Ejection fraction

FS:

Fractional shortening

LVDd:

Left ventricular diameter in diastole

LVDs:

Left ventricular diameter in systole

H&E:

Hematoxylin and eosin

FACS:

Fluorescence-activated cell sorting

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

MDT:

Magnetic drug targeting

MTE:

Magnetic tissue engineering

References

  1. Murray SA, Boyd K, Kendall M, Worth A, Benton TF, Clausen H. Dying of lung cancer or cardiac failure: prospective qualitative interview study of patients and their carers in the community. Bmj. 2002;325(7370):929.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bellumkonda L, Tyrrell D, Hummel SL, Goldstein DR. Pathophysiology of heart failure and frailty: a common inflammatory origin? Aging Cell. 2017;16:444–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Teerlink JR, Metra M, Filippatos GS, Davison BA, Bartunek J, Terzic A, et al. Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: results from the Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) study. Eur J Heart Fail. 2017;19(11):1520–9.

    Article  PubMed  Google Scholar 

  4. Sougawa, N., et al., Novel stem cell niches laminin 511 promotes functional angiogenesis through enhanced stem cell homing by modulating “stem cell beds” in the failed heart. 2017, Am Heart Assoc.

  5. Han J, Kim B, Shin JY, Ryu S, Noh M, Woo J, et al. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells’ therapeutic efficacy for myocardial infarction. ACS Nano. 2015;9(3):2805–19.

    Article  PubMed  CAS  Google Scholar 

  6. Bing W, Pang X, QU Q, Bai X, Yang W, Bi Y, et al. Simvastatin improves the homing of BMSCs via the PI3K/AKT/miR-9 pathway. J Cell Mol Med. 2016;20(5):949–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Jiang Q, Yu T, Huang K, Zhang H, Zheng Z, Hu S. Systemic redistribution of the intramyocardially injected mesenchymal stem cells by repeated remote ischaemic post-conditioning. J Cell Mol Med. 2018;22(1):417–28.

    Article  PubMed  CAS  Google Scholar 

  8. Ottersbach A, Mykhaylyk O, Heidsieck A, Eberbeck D, Rieck S, Zimmermann K, et al. Improved heart repair upon myocardial infarction: combination of magnetic nanoparticles and tailored magnets strongly increases engraftment of myocytes. Biomaterials. 2018;155:176–90.

    Article  PubMed  CAS  Google Scholar 

  9. Amani H, Habibey R, Hajmiresmail SJ, Latifi S, Pazoki-Toroudi H, Akhavan O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B. 2017;5(48):9452–76.

    Article  CAS  Google Scholar 

  10. Jazayeri M, et al. Enhanced detection sensitivity of prostate-specific antigen via PSA-conjugated gold nanoparticles based on localized surface plasmon resonance: GNP-coated anti-PSA/LSPR as a novel approach for the identification of prostate anomalies. Cancer Gene Ther. 2016;23(10):365–9.

    Article  PubMed  CAS  Google Scholar 

  11. Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sensing and bio-sensing research. 2016;9:17–22.

    Article  Google Scholar 

  12. Wadajkar SA, et al. Design and application of magnetic-based theranostic nanoparticle systems. Recent Patents on Biomedical Engineering. 2013;6(1):47–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Taylor A, Wilson KM, Murray P, Fernig DG, Lévy R. Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet? Chem Soc Rev. 2012;41(7):2707–17.

    Article  PubMed  CAS  Google Scholar 

  14. Bernsen MR, Moelker AD, Wielopolski PA, van Tiel ST, Krestin GP. Labelling of mammalian cells for visualisation by MRI. Eur Radiol. 2010;20(2):255–74.

    Article  PubMed  Google Scholar 

  15. Shen WB, Vaccaro DE, Fishman PS, Groman EV, Yarowsky P. SIRB, sans iron oxide rhodamine B, a novel cross-linked dextran nanoparticle, labels human neuroprogenitor and SH-SY5Y neuroblastoma cells and serves as a USPIO cell labeling control. Contrast Media Mol Imaging. 2016;11(3):222–8.

    Article  PubMed  CAS  Google Scholar 

  16. Cheng K, Malliaras K, Li TS, Sun B, Houde C, Galang G, et al. Magnetic enhancement of cell retention, engraftment, and functional benefit after intracoronary delivery of cardiac-derived stem cells in a rat model of ischemia/reperfusion. Cell Transplant. 2012;21(6):1121–35.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Luciani A, Wilhelm C, Bruneval P, Cunin P, Autret G, Rahmouni A, et al. Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver. Eur Radiol. 2009;19(5):1087–96.

    Article  PubMed  Google Scholar 

  18. Verma VK, et al. Fluorescent magnetic iron oxide nanoparticles for cardiac precursor cell selection from stromal vascular fraction and optimization for magnetic resonance imaging. Int J Nanomedicine. 2015;10:711.

    PubMed  PubMed Central  Google Scholar 

  19. Li M, Gu H, Zhang C. Highly sensitive magnetite nano clusters for MR cell imaging. Nanoscale Res Lett. 2012;7(1):204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Prabhu S, Mutalik S, Rai S, Udupa N, Rao BSS. PEGylation of superparamagnetic iron oxide nanoparticle for drug delivery applications with decreased toxicity: an in vivo study. J Nanopart Res. 2015;17(10):412.

    Article  CAS  Google Scholar 

  21. Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Transactions on Nanobiosci. 2004;3(1):66–73.

    Article  Google Scholar 

  22. Ishida T, Wang XY, Shimizu T, Nawata K, Kiwada H. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release. 2007;122(3):349–55.

    Article  PubMed  CAS  Google Scholar 

  23. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.

    Article  PubMed  CAS  Google Scholar 

  24. Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015;10:1727.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Naseroleslami M, et al. Magnetic resonance imaging of human-derived amniotic membrane stem cells using pegylated superparamagnetic iron oxide nanoparticles. Cell J (Yakhteh). 2016;18(3):332.

    Google Scholar 

  26. Lim J, Yeap S, Che H, Low S. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett. 2013;8(1):381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Andreas K, Georgieva R, Ladwig M, Mueller S, Notter M, Sittinger M, et al. Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials. 2012;33(18):4515–25.

    Article  PubMed  CAS  Google Scholar 

  28. Moyer, M.T. and M.A. Kumar, Traumatic brain injury, in Neurocritical care for the advanced practice clinician. 2018, Springer. p. 165–181.

  29. Amani H, Ajami M, Nasseri Maleki S, Pazoki-Toroudi H, Daglia M, Tsetegho Sokeng AJ, et al. Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants. Biochimie. 2017;142:63–79.

    Article  PubMed  CAS  Google Scholar 

  30. Ajami M, Pazoki-Toroudi H, Amani H, Nabavi SF, Braidy N, Vacca RA, et al. Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols. Neurosci Biobehav Rev. 2017;73:39–47.

    Article  PubMed  CAS  Google Scholar 

  31. Pazoki-Toroudi H, Amani H, Ajami M, Nabavi SF, Braidy N, Kasi PD, et al. Targeting mTOR signaling by polyphenols: a new therapeutic target for ageing. Ageing Res Rev. 2016;31:55–66.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, G., et al., The application of nanomaterials in stem cell therapy for some neurological diseases. Curr Drug Targets, 2017.

  33. Cheng K, Li TS, Malliaras K, Davis DR, Zhang Y, Marban E. Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ Res. 2010;106(10):1570–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lu C-W, Hsiao JK, Liu HM, Wu CH. Characterization of an iron oxide nanoparticle labelling and MRI-based protocol for inducing human mesenchymal stem cells into neural-like cells. Sci Rep. 2017;7(1):3587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hamoudeh M, Faraj AA, Canet-Soulas E, Bessueille F, Léonard D, Fessi H. Elaboration of PLLA-based superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int J Pharm. 2007;338(1–2):248–57.

    Article  PubMed  CAS  Google Scholar 

  36. Kim SJ, Lewis B, Steiner MS, Bissa UV, Dose C, Frank JA. Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. Contrast Media Mol Imaging. 2016;11(1):55–64.

    Article  PubMed  CAS  Google Scholar 

  37. Vaněček V, et al. Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury. Int J Nanomedicine. 2012;7:3719.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, et al. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 2012;21(6):1137–48.

    Article  PubMed  Google Scholar 

  40. Chung HJ, Lee H, Bae KH, Lee Y, Park J, Cho SW, et al. Facile synthetic route for surface-functionalized magnetic nanoparticles: cell labeling and magnetic resonance imaging studies. ACS Nano. 2011;5(6):4329–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Poller WC, Löwa N, Wiekhorst F, Taupitz M, Wagner S, Möller K, et al. Magnetic particle spectroscopy reveals dynamic changes in the magnetic behavior of very small superparamagnetic iron oxide nanoparticles during cellular uptake and enables determination of cell-labeling efficacy. J Biomed Nanotechnol. 2016;12(2):337–46.

    Article  PubMed  CAS  Google Scholar 

  42. Naseroleslami M, Parivar K, Khoei S, Aboutaleb N. Optimal concentration of PEG-coated Fe3O4 nanoparticles for generation of reactive oxygen species in human-derived amniotic membrane stem cells. Adv Stud Biol. 2015;7(8):377–88.

    Article  Google Scholar 

  43. Amsalem Y, et al. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation. 2007;116(11 suppl):I-38–I45.

    CAS  Google Scholar 

  44. Au K-W, Liao SY, Lee YK, Lai WH, Ng KM, Chan YC, et al. Effects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells. Biochem Biophys Res Commun. 2009;379(4):898–903.

    Article  PubMed  CAS  Google Scholar 

  45. Chaudeurge A, Wilhelm C, Chen-Tournoux A, Farahmand P, Bellamy V, Autret G, et al. Can magnetic targeting of magnetically labeled circulating cells optimize intramyocardial cell retention? Cell Transplant. 2012;21(4):679–91.

    Article  PubMed  Google Scholar 

  46. Mani V, Adler E, Briley-Saebo KC, Bystrup A, Fuster V, Keller G, et al. Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med. 2008;60(1):73–81.

    Article  PubMed  Google Scholar 

  47. Li L, Zhang Y, Li Y, Yu B, Xu Y, Zhao SD, et al. Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl Int. 2008;21(12):1181–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported financially by Physiology Research Center of Iran, University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Aboutaleb.

Ethics declarations

Ethical approval

Animal Ethical Committee of Iran University of Medical Sciences approved all protocols and surgical procedures. The animals were housed five per cage in a room with controlled temperature, on 12-h:12-h light:dark schedule, moisture (40–60%) with free access to standard food and water.

Informed consent

The amniotic membranes were provided by Shahid Akbar Abadi Hospital upon informed consent of the participants in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 1003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseroleslami, M., Aboutaleb, N. & Parivar, K. The effects of superparamagnetic iron oxide nanoparticles-labeled mesenchymal stem cells in the presence of a magnetic field on attenuation of injury after heart failure. Drug Deliv. and Transl. Res. 8, 1214–1225 (2018). https://doi.org/10.1007/s13346-018-0567-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0567-8

Keywords

Navigation