Log in

Influence of polymeric carrier on the disposition and retention of 20(R)-ginsenoside-rg3-loaded swellable microparticles in the lung

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the influence of differently charged biocompatible polymers, including chitosan (CS), hyaluronic acid (HA), and hydroxypropyl cellulose (HPC), on the disposition and retention of 20(R)-ginsenoside-rg3 (Rg3)-loaded swellable microparticles in the lung. A high-pressure homogenization method combined with spray drying was used to prepare Rg3-loaded microparticles. In vitro aerodynamic performance of different microparticles was characterized by the Next Generation Impactor (NGI). Retention of the swellable microparticles in the rat lung was investigated using bronchoalveolar lavage fluid method. Influence of drug loading, polymer molecular weight, and polymer charge on the properties of the swellable microparticles was investigated. It was found that drug loading had no significant influence on experimental mass median aerodynamic diameter (MMADe) and fine particle fraction (FPF). Increasing polymer molecular weight caused no remarkable change in MMADe value, but the FPF value decreased with the increase of polymer molecular weight. At the same molecular weight level, polymer structure and charge had no statistical influence on the in vitro aerodynamic properties of the microparticles and lung disposition, but it influenced the swelling and bioadhesion behavior and therefore lung retention profile. Desirable phagocytosis escapement and inhibition of A549 cell proliferation were achieved for the developed swellable microparticles. In conclusion, the lung retention of swellable microparticles can be adjusted by selecting polymeric carriers with different structure and charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. Ca-Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. Ca-Cancer J Clin. 2015;65(1):5–29. https://doi.org/10.3322/caac.21254.

    Article  PubMed  Google Scholar 

  3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. https://doi.org/10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  4. Jaracz S, Chen J, Kuznetsova LV, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem. 2005;13(17):5043–54. https://doi.org/10.1016/j.bmc.2005.04.084.

    Article  CAS  PubMed  Google Scholar 

  5. Kratz F, Müller IA, Ryppa C, Warnecke A. Prodrug strategies in anticancer chemotherapy. ChemMedChem. 2008;3(1):20–53. https://doi.org/10.1002/cmdc.200700159.

    Article  CAS  PubMed  Google Scholar 

  6. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588–99. https://doi.org/10.1046/j.1365-2125.2003.01892.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liang Z, Ni R, Zhou J, Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov Today. 2015;20(3):380–9. https://doi.org/10.1016/j.drudis.2014.09.020.

    Article  CAS  PubMed  Google Scholar 

  8. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science (New York, N.Y.). 1997;276(5320):1868–71. https://doi.org/10.1126/science.276.5320.1868.

    Article  CAS  Google Scholar 

  9. Ni R, Zhao J, Liu Q, Liang Z, Muenster U, Mao S. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur J Pharm Sci. 2017;99:137–46. https://doi.org/10.1016/j.ejps.2016.12.013.

    Article  CAS  PubMed  Google Scholar 

  10. Lee W-H, Loo CY, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm Sci. 2015;10(6):481–9. https://doi.org/10.1016/j.ajps.2015.08.009.

    Article  Google Scholar 

  11. Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release. 2014;183:18–26. https://doi.org/10.1016/j.jconrel.2014.03.012.

    Article  CAS  PubMed  Google Scholar 

  12. Zhong Q. Co-spray dried mannitol/poly(amidoamine)-doxorubicin dry-powder inhaler formulations for lung adenocarcinoma: morphology, in vitro evaluation, and aerodynamic performance. AAPS PharmSciTech. 2017; https://doi.org/10.1208/s12249-017-0859-1.

  13. Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SRP. Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm. 2016;13(7):2363–75. https://doi.org/10.1021/acs.molpharmaceut.6b00126.

    Article  CAS  PubMed  Google Scholar 

  14. El-Sherbiny IM, McGill S, Smyth HDC. Swellable microparticles as carriers for sustained pulmonary drug delivery. J Pharm Sci. 2010;99(5):2343–56. https://doi.org/10.1002/jps.22003.

    Article  CAS  PubMed  Google Scholar 

  15. El-Sherbiny IM, Smyth HDC. Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Mol Pharm. 2012;9(2):269–80. https://doi.org/10.1021/mp200351y.

    Article  CAS  PubMed  Google Scholar 

  16. Yoncheva K, Gómez S, Campanero MA, Gamazo C, Irache JM. Bioadhesive properties of pegylated nanoparticles. Expert Opin Drug Deliv. 2005;2(2):205–18. https://doi.org/10.1517/17425247.2.2.205.

    Article  CAS  PubMed  Google Scholar 

  17. Bernkop-Schnuerch A, Duennhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 2012;81(3):463–9. https://doi.org/10.1016/j.ejpb.2012.04.007.

    Article  CAS  Google Scholar 

  18. Datir SR, Das M, Singh RP, Jain S. Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem. 2012;23(11):2201–13. https://doi.org/10.1021/bc300248t.

    Article  CAS  PubMed  Google Scholar 

  19. Platt VM, Szoka FC Jr. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5(4):474–86. https://doi.org/10.1021/mp800024g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yadav AK, Mishra P, Agrawal GP. An insight on hyaluronic acid in drug targeting and drug delivery. J Drug Target. 2008;16(2):91–107. https://doi.org/10.1080/10611860701794296.

    Article  CAS  PubMed  Google Scholar 

  21. Lu P, Su W, Miao Zh, Niu Hr, Liu J, Hua Ql. Effect and mechanism of ginsenoside Rg3 on postoperative life span of patients with non-small cell lung cancer. Chin J Integr Med. 2008;14(1):33–6. https://doi.org/10.1007/s11655-007-9002-6.

    Article  CAS  PubMed  Google Scholar 

  22. Yue PYK, Wong DYL, Wu PK, Leung PY, Mak NK, Yeung HW, et al. The angiosuppressive effects of 20(R)-ginsenoside Rg(3). Biochem Pharmacol. 2006;72(4):437–45. https://doi.org/10.1016/j.bcp.2006.04.034.

    Article  CAS  PubMed  Google Scholar 

  23. Shinkai K, Akedo H, Mukai M, Imamura F, Isoai A, Kobayashi M, et al. Inhibition of in vitro tumor cell invasion by ginsenoside Rg3. Jpn J Cancer Res: Gann. 1996;87(4):357–62. https://doi.org/10.1111/j.1349-7006.1996.tb00230.x.

    Article  CAS  PubMed  Google Scholar 

  24. Kim SW, Kwon Hy, Chi DW, Shim JH, Park JD, Lee YH, et al. Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3). Biochem Pharmacol. 2003;65(1):75–82. https://doi.org/10.1016/S0006-2952(02)01446-6.

    Article  CAS  PubMed  Google Scholar 

  25. Mao SR, et al. The depolymerization of chitosan: effects on physicochemical and biological properties. Int J Pharm. 2004;281(1–2):45–54. https://doi.org/10.1016/j.ijpharm.2004.05.019.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X, Li LC, Mao S. Nanosuspensions of poorly water soluble drugs prepared by top-down technologies. Curr Pharm Des. 2014;20(3):388–407. https://doi.org/10.2174/13816128113199990401.

    Article  CAS  PubMed  Google Scholar 

  27. Bernkop-Schnurch A, Steininger S. Synthesis and characterisation of mucoadhesive thiolated polymers. Int J Pharm. 2000;194(2):239–47. https://doi.org/10.1016/S0378-5173(99)00387-7.

    Article  CAS  PubMed  Google Scholar 

  28. Ungaro F, d'Emmanuele di Villa Bianca R, Giovino C, Miro A, Sorrentino R, Quaglia F, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release. 2009;135(1):25–34. https://doi.org/10.1016/j.jconrel.2008.12.011.

    Article  CAS  PubMed  Google Scholar 

  29. Marple VA, Roberts DL, Romay FJ, Miller NC, Truman KG, van Oort M, et al. Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part I: design. J Aerosol Med-Depos Clearance Eff Lung. 2003;16(3):283–99. https://doi.org/10.1089/089426803769017659.

    Article  Google Scholar 

  30. Mauderly JL. Bronchopulmonary lavage of small laboratory animals. Lab Anim Sci. 1977;27(2):255–61.

    CAS  PubMed  Google Scholar 

  31. Heng PW, Chan LW, Lim LT. Quantification of the surface morphologies of lactose carriers and their effect on the in vitro deposition of salbutamol sulphate. Chem Pharm Bull. 2000;48(3):393–8. https://doi.org/10.1248/cpb.48.393.

    Article  CAS  PubMed  Google Scholar 

  32. Ni R, Muenster U, Zhao J, Zhang L, Becker-Pelster EM, Rosenbruch M, et al. Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: in vitro and in vivo characterization. J Control Release. 2017;249:11–22. https://doi.org/10.1016/j.jconrel.2017.01.023.

    Article  CAS  PubMed  Google Scholar 

  33. Sun W, Mao S, Shi Y, Li LC, Fang L. Nanonization of itraconazole by high pressure homogenization: stabilizer optimization and effect of particle size on oral absorption. J Pharm Sci. 2011;100(8):3365–73. https://doi.org/10.1002/jps.22587.

    Article  CAS  PubMed  Google Scholar 

  34. Dunbar C, Scheuch G, Sommerer K, DeLong M, Verma A, Batycky R. In vitro and in vivo dose delivery characteristics of large porous particles for inhalation. Int J Pharm. 2002;245(1–2):179–89. https://doi.org/10.1016/S0378-5173(02)00349-6.

    Article  CAS  PubMed  Google Scholar 

  35. Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38(7):728–46. https://doi.org/10.1016/j.jaerosci.2007.04.005.

    Article  CAS  Google Scholar 

  36. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022. https://doi.org/10.1007/s11095-007-9475-1.

    Article  CAS  PubMed  Google Scholar 

  37. Yao J, Kuang Lim L, **e J, Hua J, Wang CH. Characterization of electrospraying process for polymeric particle fabrication. J Aerosol Sci. 2008;39(11):987–1002. https://doi.org/10.1016/j.jaerosci.2008.07.003.

    Article  CAS  Google Scholar 

  38. Chew NYK, Tang P, Chan HK, Raper JA. How much particle surface corrugation is sufficient to improve aerosol performance of powders? Pharm Res. 2005;22(1):148–52. https://doi.org/10.1007/s11095-004-9020-4.

    Article  CAS  PubMed  Google Scholar 

  39. Adi S, Adi H, Chan HK, Tong Z, Yang R, Yu A. Effects of mechanical impaction on aerosol performance of particles with different surface roughness. Powder Technol. 2013;236:164–70. https://doi.org/10.1016/j.powtec.2012.02.051.

    Article  CAS  Google Scholar 

  40. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39. https://doi.org/10.1289/ehp.7339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bosquillon C, Prat W, Vanbever R. Pulmonary delivery of growth hormone using dry powders and visualization of its local fate in rats. J Control Release. 2004;96(2):233–44. https://doi.org/10.1016/j.jconrel.2004.01.027.

    Article  CAS  PubMed  Google Scholar 

  42. Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res. 1994;11(8):1186–9. https://doi.org/10.1023/A:1018901302450.

    Article  CAS  PubMed  Google Scholar 

  43. Sau-Hung Spence L, Robinson JR. The contribution of anionic polymer structural features to mucoadhesion. J Control Release. 1987;5(3):223–31. https://doi.org/10.1016/0168-3659(88)90021-1.

    Article  Google Scholar 

Download references

Funding

This project is financially supported by the Construction of Innovative Drug Incubation Platform of Liaoning Province (No. 8 (2013)) and Major Scientific and Technological Special Projects of National “Major New Drug Discovery” of China (No. 2017ZX09201-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirui Mao.

Ethics declarations

The experiments comply with the current laws of China. All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, X., Fan, L. et al. Influence of polymeric carrier on the disposition and retention of 20(R)-ginsenoside-rg3-loaded swellable microparticles in the lung. Drug Deliv. and Transl. Res. 8, 252–265 (2018). https://doi.org/10.1007/s13346-017-0456-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0456-6

Keywords

Navigation