Log in

Existence of solutions for some systems of integro-differential equations with transport and superdiffusion

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish the existence in the sense of sequences of solutions for certain systems of integro-differential equations which involve the drift terms and the square root of the one dimensional negative Laplace operator, on the whole real line or on a finite interval with periodic boundary conditions in the corresponding \(H^{2}\) spaces. The argument is based on the fixed point technique when the elliptic systems contain first order differential operators with and without Fredholm property. It is proven that, under the reasonable technical conditions, the convergence in \(L^{1}\) of the integral kernels yields the existence and convergence in \(H^{2}\) of the solutions. We emphasize that the study of the systems is more complicated than of the scalar case and requires to overcome more cumbersome technicalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. Agranovich, M.S.: Elliptic boundary problems. In: Encyclopaedia Math. Sci., Partial Differential Equations, IX, vol. 79, pp. 1–144. Springer, Berlin (1997)

  2. Apreutesei, N., Bessonov, N., Volpert, V., Vougalter, V.: Spatial structures and generalized travelling waves for an integro-differential equation. Discrete Contin. Dyn. Syst. Ser. B 13(3), 537–557 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, A., Desvillettes, L., Prevost, C.: Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Commun. Pure Appl. Anal. 11(1), 83–96 (2012)

    Article  MathSciNet  Google Scholar 

  4. Berestycki, H., Nadin, G., Perthame, B., Ryzhik, L.: The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity 22(12), 2813–2844 (2009)

    Article  MathSciNet  Google Scholar 

  5. Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I. Periodic framework. J. Eur. Math. Soc. (JEMS) 7(2), 173–213 (2005)

    Article  MathSciNet  Google Scholar 

  6. Brezis, H., Oswald, L.: Remarks on sublinear elliptic equations. Nonlinear Anal. 10(1), 55–64 (1986)

    Article  MathSciNet  Google Scholar 

  7. Desvillettes, L., Fellner, K., Tang, B.Q.: Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks. SIAM J. Math. Anal. 49(4), 2666–2709 (2017)

    Article  MathSciNet  Google Scholar 

  8. Ducrot, A., Marion, M., Volpert, V.: Reaction-diffusion problems with non-Fredholm operators. Adv. Differ. Equ. 13(11–12), 1151–1192 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Efendiev, M.: Fredholm structures, topological invariants and applications. In: AIMS Series on Differential Equations and Dynamical Systems, vol. 3. American Institute of Mathematical Sciences (AIMS), Springfield (2009)

  10. Efendiev, M.: Finite and infinite dimensional attractors for evolution equations of mathematical physics. In: Gakuto International Series. Mathematical Sciences and Applications, vol. 33. Gakkotosho Co., Ltd., Tokyo (2010)

  11. Efendiev, M.A., Peletier, L.A.: On the large time behavior of solutions of fourth order parabolic equations and \(\varepsilon \)-entropy of their attractors. C. R. Math. Acad. Sci. Paris 344(2), 93–96 (2007)

    Article  MathSciNet  Google Scholar 

  12. Efendiev, M., Vougalter, V.: Solvability of some integro-differential equations with drift. Osaka J. Math. 57(2), 247–265 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Efendiev, M., Vougalter, V.: Solvability in the sense of sequences for some fourth order non-Fredholm operators. J. Differ. Equ. 271, 280–300 (2021)

    Article  MathSciNet  Google Scholar 

  14. Efendiev, M., Vougalter, V.: Verification of biomedical processes with anomalous diffusion, transport and interaction of species. In: Nonlinear Dynamics, Chaos, and Complexity—-In Memory of Professor Valentin Afraimovich, Nonlinear Phys. Sci., pp. 65–74. Springer, Singapore (2021)

  15. Efendiev, M., Vougalter, V.: Existence of solutions for some non-Fredholm integro-differential equations with mixed diffusion. J. Differ. Equ. 284, 83–101 (2021)

    Article  MathSciNet  Google Scholar 

  16. Efendiev, M., Vougalter, V.: Solvability of some integro-differential equations with drift and superdiffusion. J. Dyn. Differ. Equ. (2022). https://doi.org/10.1007/s10884-022-10147-0

  17. Efendiev, M., Vougalter, V.: Linear and nonlinear non-Fredholm operators and their applications. Electron. Res. Arch. 30(2), 515–534 (2022)

    Article  MathSciNet  Google Scholar 

  18. Efendiev, M.A., Zelik, S.V.: The attractor for a nonlinear reaction–diffusion system in an unbounded domain. Commun. Pure Appl. Math. 54(6), 625–688 (2001)

    Article  MathSciNet  Google Scholar 

  19. Gebran, H.G., Stuart, C.A.: Fredholm and properness properties of quasilinear elliptic systems of second order. Proc. Edinb. Math. Soc. (2) 48(1), 91–124 (2005)

    Article  MathSciNet  Google Scholar 

  20. Gebran, H.G., Stuart, C.A.: Exponential decay and Fredholm properties in second-order quasilinear elliptic systems. J. Differ. Equ. 249(1), 94–117 (2010)

    Article  MathSciNet  Google Scholar 

  21. Granada, J.R.G., Kovtunenko, V.A.: Entropy method for generalized Poisson–Nernst–Planck equations. Anal. Math. Phys. 8(4), 603–619 (2018)

    Article  MathSciNet  Google Scholar 

  22. Hislop, P.D., Sigal, I.M.: Introduction to spectral theory. With applications to Schrödinger operators. In: Applied Mathematical Sciences, vol. 113. Springer, New York (1996)

  23. Krasnosel’skii, M.A.: Topological Methods in the Theory of Nonlinear Integral Equations, p. 395. Pergamon Press, The Macmillan Co., New York (1964)

  24. Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. (French) Travaux et Recherches Mathematiques, vol. 1, no. 17. Dunod, Paris (1968)

  25. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

  26. Rabier, P.J., Stuart, C.A.: Fredholm and properness properties of quasilinear elliptic operators on \({{\mathbb{R} }}^{N}\). Math. Nachr. 231, 129–168 (2001)

    Article  MathSciNet  Google Scholar 

  27. Volevich, L.R.: Solubility of boundary value problems for general elliptic systems (Russian). Mat. Sb. (N.S.) 68(110), 373–416 (1965)

    MathSciNet  Google Scholar 

  28. Volpert, V.: Elliptic partial differential equations. In: Volume 1: Fredholm theory of elliptic problems in unbounded domains. Monographs in Mathematics, vol. 101. Birkhäuser/Springer, Basel (2011)

  29. Volpert, V., Kazmierczak, B., Massot, M., Peradzynski, Z.: Solvability conditions for elliptic problems with non-Fredholm operators. Appl. Math. (Warsaw) 29(2), 219–238 (2002)

    Article  MathSciNet  Google Scholar 

  30. Volpert, V., Vougalter, V.: Emergence and propagation of patterns in nonlocal reaction–diffusion equations arising in the theory of speciation. In: Dispersal, Individual Movement and Spatial Ecology, Lecture Notes in Math., vol. 2071, pp. 331–353. Springer, Heidelberg (2013)

  31. Volpert, V., Vougalter, V.: Solvability in the sense of sequences to some non-Fredholm operators. Electron. J. Differ. Equ. 160, 16pp (2013)

  32. Vougalter, V., Volpert, V.: Solvability conditions for some non-Fredholm operators. Proc. Edinb. Math. Soc. (2) 54(1), 249–271 (2011)

    Article  MathSciNet  Google Scholar 

  33. Vougalter, V., Volpert, V.: On the existence of stationary solutions for some non-Fredholm integro-differential equations. Doc. Math. 16, 561–580 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Vougalter, V., Volpert, V.: On the solvability conditions for the diffusion equation with convection terms. Commun. Pure Appl. Anal. 11(1), 365–373 (2012)

    Article  MathSciNet  Google Scholar 

  35. Vougalter, V., Volpert, V.: Solvability conditions for some linear and nonlinear non-Fredholm elliptic problems. Anal. Math. Phys. 2(4), 473–496 (2012)

    Article  MathSciNet  Google Scholar 

  36. Vougalter, V., Volpert, V.: Existence of stationary solutions for some systems of integro-differential equations with superdiffusion. Rocky Mount. J. Math. 47(3), 955–970 (2017)

    Article  MathSciNet  Google Scholar 

  37. Vougalter, V., Volpert, V.: On the existence of stationary solutions for some systems of non-Fredholm integro-differential equations with superdiffusion. Discrete, Nonlinear, Complex 6(1), 75–86 (2017)

    MATH  Google Scholar 

  38. Vougalter, V., Volpert, V.: Existence in the sense of sequences of stationary solutions for some non-Fredholm integro-differential equations. J. Math. Sci. (NY) 228(6), 601–632 (2018). Problems in mathematical analysis, no. 90 (Russian)

Download references

Acknowledgements

V. V. is grateful to Israel Michael Sigal for the partial support by the Robertson Chair grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitali Vougalter.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let \(G_{k}(x)\) be a function, \(G_{k}(x): {{\mathbb {R}}}\rightarrow {{\mathbb {R}}}\), for which we denote its standard Fourier transform using the hat symbol as

$$\begin{aligned} \widehat{G_{k}}(p):={1\over \sqrt{2\pi }}\int _{-\infty }^{\infty }G_{k}(x) e^{-ipx}dx, \quad p\in {{\mathbb {R}}}. \end{aligned}$$
(5.1)

Clearly,

$$\begin{aligned} \Vert \widehat{G_{k}}(p)\Vert _{L^{\infty }({{\mathbb {R}}})}\le {1\over \sqrt{2\pi }} \Vert G_{k}(x)\Vert _{L^{1}({{\mathbb {R}}})} \end{aligned}$$
(5.2)

and \(\displaystyle {G_{k}(x)={1\over \sqrt{2\pi }}\int _{-\infty }^{\infty } \widehat{G_{k}}(q)e^{iqx}dq, \ x\in {{\mathbb {R}}}.}\) By means of (5.2), we have

$$\begin{aligned} \Vert p\widehat{G_{k}}(p)\Vert _{L^{\infty }({{\mathbb {R}}})}\le {1\over \sqrt{2\pi }} \Bigg \Vert \frac{dG_{k}(x)}{dx}\Bigg \Vert _{L^{1}({{\mathbb {R}}})}. \end{aligned}$$
(5.3)

For the technical purposes we will use the auxiliary quantities

$$\begin{aligned} N_{a, \ b, \ k}:=max\Big \{ \Big \Vert \frac{\widehat{G_{k}}(p)}{|p|-a_{k}-ib_{k}p}\Big \Vert _{L^{\infty }({{\mathbb {R}}})}, \quad \Big \Vert \frac{p^{2}\widehat{G_{k}}(p)}{|p|-a_{k}-ib_{k}p}\Big \Vert _{L^{\infty }({{\mathbb {R}}})} \Big \}, \end{aligned}$$
(5.4)

where \(a_{k}\ge 0, \ b_{k}\in {{\mathbb {R}}}, \ b_{k}\ne 0\) are the constants, \(1\le k\le N, \ N\ge 2\). Under the assumptions of Lemma A1 below, all the quantities (5.4) will be finite, so that

$$\begin{aligned} N_{a, \ b}:=max_{1\le k\le N}N_{a, \ b, \ k}<\infty . \end{aligned}$$
(5.5)

The auxiliary lemmas below are the adaptations of the ones proved in [16] in order to study the single integro-differential equation with drift and superdiffusion, analogical to system (1.2). Let us provide them for the convenience of the readers.

Lemma A1

Let \(N\ge 2, \ 1\le k\le N, \ b_{k}\in {{\mathbb {R}}}, \ b_{k}\ne 0\) and \(G_{k}(x): {{\mathbb {R}}}\rightarrow {{\mathbb {R}}}, \ G_{k}(x)\in W^{1, 1}({{\mathbb {R}}})\) and \(1\le l\le N-1\).

  1. a)

    Let \(a_{k}>0\) for \(1\le k\le l\). Then \(N_{a, \ b, \ k}<\infty \).

  2. b)

    Let \(a_{k}=0\) for \(l+1\le k\le N\) and additionally \(xG_{k}(x)\in L^{1}({{\mathbb {R}}})\). Then \(N_{0, \ b, \ k}<\infty \) if and only if

    $$\begin{aligned} (G_{k}(x),1)_{L^{2}({{\mathbb {R}}})}=0 \end{aligned}$$
    (5.6)

    is valid.

Proof

First of all, it can be trivially checked that in both cases a) and b) of the lemma, under our assumptions the expressions

$$\begin{aligned} \frac{p^{2}\widehat{G_{k}}(p)}{|p|-a_{k}-ib_{k}p}\in L^{\infty }({{\mathbb {R}}}), \quad 1\le k\le N. \end{aligned}$$
(5.7)

Evidently, the functions \(\displaystyle {\frac{p}{|p|-a_{k}-ib_{k}p}}\) are bounded and \(p\widehat{G_{k}}(p)\in L^{\infty }({{\mathbb {R}}})\) via inequality (5.3) above, which yields (5.7). We turn our attention to establishing the result of the part a) of our lemma. Let us estimate the expressions

$$\begin{aligned} \frac{|\widehat{G_{k}}(p)|}{\sqrt{(|p|-a_{k})^{2}+b_{k}^{2}p^{2}}}, \quad 1\le k\le l. \end{aligned}$$
(5.8)

Clearly, the numerator of (5.8) can be bounded from above via (5.2) and the denominator in (5.8) can be trivially estimated below by a finite, positive constant, so that

$$\begin{aligned} \Bigg |\frac{\widehat{G_{k}}(p)}{|p|-a_{k}-ib_{k}p}\Bigg |\le C\Vert G_{k}(x)\Vert _ {L^{1}({{\mathbb {R}}})}<\infty \end{aligned}$$

as assumed. Here and below C will stand for a finite, positive constant. This implies that under the given conditions, if \(a_{k}>0\) we have \(N_{a, \ b, \ k}<\infty \). In the cases of \(a_{k}=0\), we will use that

$$\begin{aligned} \widehat{G_{k}}(p)=\widehat{G_{k}}(0)+\int _{0}^{p}\frac{d\widehat{G_{k}}(s)}{ds}ds. \end{aligned}$$

Thus,

$$\begin{aligned} \frac{\widehat{G_{k}}(p)}{|p|-ib_{k}p}=\frac{\widehat{G_{k}}(0)}{|p|-ib_{k}p}+ \frac{\int _{0}^{p}\frac{d\widehat{G_{k}}(s)}{ds}ds}{|p|-ib_{k}p}. \end{aligned}$$
(5.9)

Using definition (5.1) of the standard Fourier transform, we easily obtain

$$\begin{aligned} \Bigg |\frac{d\widehat{G_{k}}(p)}{dp}\Bigg |\le \frac{1}{\sqrt{2\pi }} \Vert xG_{k}(x)\Vert _{L^{1}({{\mathbb {R}}})}. \end{aligned}$$

Hence,

$$\begin{aligned} \Bigg |\frac{\int _{0}^{p}\frac{d\widehat{G_{k}}(s)}{ds}ds}{|p|-ib_{k}p}\Bigg |\le \frac{\Vert xG_{k}(x)\Vert _{L^{1}({{\mathbb {R}}})}}{\sqrt{2\pi (1+b_{k}^{2})}}<\infty \end{aligned}$$

due to our assumptions. Therefore, the expression in the left side of (5.9) is bounded if and only if \(\widehat{G_{k}}(0)=0\), which is equivalent to orthogonality relation (5.6). \(\square \)

We introduce the following technical expressions, which will help us to study systems (2.8).

$$\begin{aligned} N_{a, \ b, \ k}^{(m)}:=max\Bigg \{ \Big \Vert \frac{\widehat{G_{k, m}}(p)}{|p|-a_{k}-ib_{k}p}\Big \Vert _{L^{\infty }({{\mathbb {R}}})}, \quad \Big \Vert \frac{p^{2}\widehat{G_{k, m}}(p)}{|p|-a_{k}-ib_{k}p}\Big \Vert _{L^{\infty }({{\mathbb {R}}})}\Bigg \},\nonumber \\ \end{aligned}$$
(5.10)

where \(a_{k}\ge 0, \ b_{k}\in {{\mathbb {R}}}, \ b_{k}\ne 0\) are the constants, \(1\le k\le N, \ N\ge 2\) and \(m\in {{\mathbb {N}}}\). Under the conditions of Lemma A2 below, expressions (5.10) will be finite. This will enable us to define

$$\begin{aligned} N_{a, \ b}^{(m)}:=max_{1\le k\le N} N_{a, \ b, \ k}^{(m)}<\infty \end{aligned}$$
(5.11)

with \(m\in {{\mathbb {N}}}\). We have the following technical proposition.

Lemma A2

Let \(m\in {{\mathbb {N}}}, \ N\ge 2, \ 1\le k\le N, \ b_{k}\in {{\mathbb {R}}}, \ b_{k}\ne 0\) and \(G_{k, m}(x): {{\mathbb {R}}}\rightarrow {{\mathbb {R}}}, \ G_{k, m}(x)\in W^{1, 1}({{\mathbb {R}}})\), so that \(G_{k, m}(x)\rightarrow G_{k}(x)\) in \(W^{1, 1}({{\mathbb {R}}})\) as \(m\rightarrow \infty \) and \(1\le l\le N-1\).

  1. (a)

    Let \(a_{k}>0\) for \(1\le k\le l\).

  2. (b)

    Let \(a_{k}=0\) for \(l+1\le k\le N\) and in addition \(xG_{k, m}(x)\in L^{1}({{\mathbb {R}}})\), so that \(xG_{k, m}(x)\rightarrow xG_{k}(x)\) in \(L^{1}({{\mathbb {R}}})\) as \(m\rightarrow \infty \) and

    $$\begin{aligned} (G_{k, m}(x), 1)_{L^{2}({{\mathbb {R}}})}=0, \quad m\in {{\mathbb {N}}} \end{aligned}$$
    (5.12)

is valid. Let in addition

$$\begin{aligned} 2\sqrt{\pi }N_{a, \ b}^{(m)}L\le 1-\varepsilon \end{aligned}$$
(5.13)

for all \(m\in {{\mathbb {N}}}\) as well with a certain fixed \(0<\varepsilon <1\). Then, for all \(1\le k\le N\), we have

$$\begin{aligned} \frac{\widehat{G_{k, m}}(p)}{|p|-a_{k}-ib_{k}p}\rightarrow \frac{\widehat{G_{k}}(p)}{|p|-a_{k}-ib_{k}p}, \quad m\rightarrow \infty , \end{aligned}$$
(5.14)
$$\begin{aligned} \frac{p^{2}\widehat{G_{k, m}}(p)}{|p|-a_{k}-ib_{k}p}\rightarrow \frac{p^{2}\widehat{G_{k}}(p)}{|p|-a_{k}-ib_{k}p}, \quad m\rightarrow \infty \end{aligned}$$
(5.15)

in \(L^{\infty }({{\mathbb {R}}})\), so that

$$\begin{aligned} \Bigg \Vert \frac{\widehat{G_{k, m}}(p)}{|p|-a_{k}-ib_{k}p}\Bigg \Vert _{L^{\infty }({{\mathbb {R}}})}\rightarrow \Bigg \Vert \frac{\widehat{G_{k}}(p)}{|p|-a_{k}-ib_{k}p}\Bigg \Vert _{L^{\infty }({{\mathbb {R}}})}, \quad m\rightarrow \infty , \end{aligned}$$
(5.16)
$$\begin{aligned} \Bigg \Vert \frac{p^{2}\widehat{G_{k, m}}(p)}{|p|-a_{k}-ib_{k}p}\Bigg \Vert _ {L^{\infty }({{\mathbb {R}}})}\rightarrow \Bigg \Vert \frac{p^{2}\widehat{G_{k}}(p)}{|p|-a_{k}-ib_{k}p}\Bigg \Vert _ {L^{\infty }({{\mathbb {R}}})}, \quad m\rightarrow \infty . \end{aligned}$$
(5.17)

Furthermore,

$$\begin{aligned} 2\sqrt{\pi }N_{a, \ b}L\le 1-\varepsilon . \end{aligned}$$
(5.18)

Proof

By means of inequality (5.2), we easily obtain for \(1\le k\le N\) that

$$\begin{aligned} \Vert \widehat{G_{k, m}}(p)-\widehat{G_{k}}(p)\Vert _{L^{\infty }({{\mathbb {R}}})}\le \frac{1}{\sqrt{2\pi }}\Vert G_{k, m}(x)-G_{k}(x)\Vert _{L^{1}({{\mathbb {R}}})}\rightarrow 0, \quad m\rightarrow \infty \nonumber \\ \end{aligned}$$
(5.19)

due to the one of our assumptions. Evidently, (5.16) and (5.17) will trivially follow from the statements of (5.14) and (5.15) respectively by virtue of the standard triangle inequality.

We use the fact that the functions \(\displaystyle {\frac{p}{|p|-a_{k}-ib_{k}p}\in L^{\infty }({{\mathbb {R}}})}\) along with the analog of bound (5.3). This yields

$$\begin{aligned} \Bigg |\frac{p^{2}\widehat{G_{k, m}}(p)}{|p|-a_{k}-ib_{k}p}- \frac{p^{2}\widehat{G_{k}}(p)}{|p|-a_{k}-ib_{k}p}\Bigg |\le & {} C\Vert p[\widehat{G_{k, m}}(p)-\widehat{G_{k}}(p)]\Vert _ {L^{\infty }({{\mathbb {R}}})}\\\le & {} \frac{C}{\sqrt{2\pi }}\Bigg \Vert \frac{dG_{k, m}(x)}{dx}-\frac{dG_{k}(x)}{dx}\Bigg \Vert _{L^{1}({{\mathbb {R}}})}. \end{aligned}$$

Thus,

$$\begin{aligned} \Bigg \Vert \frac{p^{2}\widehat{G_{k, m}}(p)}{|p|-a_{k}-ib_{k}p}-\frac{p^{2} \widehat{G_{k}}(p)}{|p|-a_{k}-ib_{k}p}\Bigg \Vert _{L^{\infty }({{\mathbb {R}}})}\le \frac{C}{\sqrt{2\pi }}\Bigg \Vert \frac{dG_{k, m}(x)}{dx}-\frac{dG_{k}(x)}{dx}\Bigg \Vert _{L^{1}({{\mathbb {R}}})}\rightarrow 0 \end{aligned}$$

as \(m\rightarrow \infty \) via the one of our assumptions, so that (5.15) is valid. Let us establish (5.14) in the situation a) when \(a_{k}>0\). For that purpose we need to consider

$$\begin{aligned} \frac{|\widehat{G_{k, m}}(p)-\widehat{G_{k}}(p)|}{\sqrt{(|p|-a_{k})^{2}+ b_{k}^{2}p^{2}}}, \quad 1\le k\le l. \end{aligned}$$
(5.20)

Evidently, the denominator in fraction (5.20) can be bounded from below by a positive constant and the numerator in (5.20) can be estimated from above by means of (5.19). Hence,

$$\begin{aligned} \Bigg \Vert \frac{\widehat{G_{k, m}}(p)}{|p|-a_{k}-ib_{k}p}-\frac{\widehat{G_{k}}(p)}{|p|-a_{k}-ib_{k}p}\Bigg \Vert _{L^{\infty }({{\mathbb {R}}})}\le C \Vert G_{k, m}(x)-G_{k}(x)\Vert _{L^{1}({{\mathbb {R}}})}\rightarrow 0 \end{aligned}$$

as \(m\rightarrow \infty \) due to the one of the assumptions, so that (5.14) is valid in the case a) of the lemma. Then we turn our attention to proving (5.14) in the situation b) when \(a_{k}=0\). In this case orthogonality conditions (5.12) are valid as assumed. We easily derive that the analogical statements will hold in the limit. Evidently,

$$\begin{aligned} |(G_{k}(x), 1)_{L^{2}({{\mathbb {R}}})}|=|(G_{k}(x)-G_{k, m}(x), 1)_{L^{2}({{\mathbb {R}}})}|\le \Vert G_{k, m}(x)-G_{k}(x)\Vert _{L^{1}({{\mathbb {R}}})}\rightarrow 0 \end{aligned}$$

as \(m\rightarrow \infty \) by virtue of the one of our assumptions. Thus,

$$\begin{aligned} (G_{k}(x), 1)_{L^{2}({{\mathbb {R}}})}=0, \quad l+1\le k\le N \end{aligned}$$
(5.21)

is valid. Obviously, we have

$$\begin{aligned} \widehat{G_{k}}(p)=\widehat{G_{k}}(0)+\int _{0}^{p}\frac{d\widehat{G_{k}}(s)}{ds}ds, \quad \widehat{G_{k, m}}(p)=\widehat{G_{k, m}}(0)+\int _{0}^{p}\frac{d\widehat{G_{k, m}}(s)}{ds}ds, \end{aligned}$$

with \(l+1\le k\le N, \ m\in {{\mathbb {N}}}\). Formulas (5.21) and (5.12) imply that

$$\begin{aligned} \widehat{G_{k}}(0)=0, \quad \widehat{G_{k, m}}(0)=0, \quad l+1\le k\le N, \quad m\in {{\mathbb {N}}}. \end{aligned}$$

Hence,

$$\begin{aligned} \Bigg |\frac{\widehat{G_{k, m}}(p)}{|p|-ib_{k}p}-\frac{\widehat{G_{k}}(p)}{|p|-ib_{k}p}\Bigg |= \Bigg |\frac{\int _{0}^{p}\Big [\frac{d\widehat{G_{k, m}}(s)}{ds}- \frac{d\widehat{G_{k}}(s)}{ds}\Big ]{ds}}{|p|-ib_{k}p}\Bigg |. \end{aligned}$$
(5.22)

Using the definition of the standard Fourier transform (5.1) we easily derive

$$\begin{aligned} \Bigg |\frac{d\widehat{G_{k, m}}(p)}{dp}-\frac{d\widehat{G_{k}}(p)}{dp}\Bigg |\le \frac{1}{\sqrt{2\pi }}\Vert xG_{k, m}(x)-xG_{k}(x)\Vert _{L^{1}({{\mathbb {R}}})}. \end{aligned}$$

This allows us to obtain the estimate from above on the right side of (5.22) as

$$\begin{aligned} \frac{\Vert xG_{k, m}(x)-xG_{k}(x)\Vert _{L^{1}({{\mathbb {R}}})}}{\sqrt{2\pi (1+b_{k}^{2})}}, \end{aligned}$$

such that

$$\begin{aligned} \Bigg \Vert \frac{\widehat{G_{k, m}}(p)}{|p|-ib_{k}p}-\frac{\widehat{G_{k}}(p)}{|p|-ib_{k}p}\Bigg \Vert _{L^{\infty }({{\mathbb {R}}})}\le \frac{\Vert xG_{k, m}(x)-xG_{k}(x)\Vert _{L^{1}({{\mathbb {R}}})}}{\sqrt{2\pi (1+b_{k}^{2})}}\rightarrow 0, \quad m\rightarrow \infty \end{aligned}$$

as assumed. Therefore, (5.14) is valid in the case b) of the lemma when \(a_{k}=0\). Evidently, under the stated conditions we have

$$\begin{aligned} N_{a, \ b, \ k}<\infty , \quad N_{a, \ b, \ k}^{(m)}<\infty , \quad m\in {{\mathbb {N}}}, \quad 1\le k\le N, \quad a_{k}\ge 0, \quad b_{k}\in {{\mathbb {R}}}, \quad b_{k}\ne 0 \end{aligned}$$

by means of the result of Lemma A1 above. We have inequalities (5.13). An trivial limiting argument using (5.16) and (5.17) gives us (5.18). \(\square \)

Consider the function \(G_{k}(x): I\rightarrow {{\mathbb {R}}}\), so that \(G_{k}(0)=G_{k}(2\pi )\). Its Fourier transform on our finite interval is given by

$$\begin{aligned} G_{k, n}:=\int _{0}^{2\pi }G_{k}(x)\frac{e^{-inx}}{\sqrt{2\pi }}dx, \quad n\in {{\mathbb {Z}}}, \end{aligned}$$
(5.23)

such that \(\displaystyle {G_{k}(x)=\sum \nolimits _{n=-\infty }^{\infty }G_{k, n}\frac{e^{inx}}{\sqrt{2\pi }}}\). Obviously, the upper bound

$$\begin{aligned} \Vert G_{k, n}\Vert _{l^{\infty }}\le \frac{1}{\sqrt{2\pi }}\Vert G_{k}(x)\Vert _{L^{1}(I)} \end{aligned}$$
(5.24)

is valid. Evidently, if our function is continuous on the interval I, we have the estimate from above

$$\begin{aligned} \Vert G_{k}(x)\Vert _{L^{1}(I)}\le 2\pi \Vert G_{k}(x)\Vert _{C(I)}. \end{aligned}$$
(5.25)

The upper bound

$$\begin{aligned} \Vert nG_{k, n}\Vert _{l^{\infty }}\le \frac{1}{\sqrt{2\pi }}\Bigg \Vert \frac{dG_{k}(x)}{dx} \Bigg \Vert _{L^{1}(I)} \end{aligned}$$
(5.26)

trivially comes from (5.24). Analogously to the whole real line case, we define

$$\begin{aligned} \mathcal{N}_{a, \ b, \ k}:=max \Bigg \{ \Bigg \Vert \frac{G_{k, n}}{|n|-a_{k}-ib_{k}n} \Bigg \Vert _{l^{\infty }}, \quad \Bigg \Vert \frac{n^{2}G_{k, n}}{|n|-a_{k}-ib_{k}n} \Bigg \Vert _{l^{\infty }}\Bigg \}, \end{aligned}$$
(5.27)

where \(a_{k}\ge 0, \ b_{k}\in {{\mathbb {R}}}, \ b_{k}\ne 0\) are the constants, \(1\le k\le N, \ N\ge 2\). Let \(\mathcal{N}_{0, \ b, \ k}\) denote (5.27) when \(a_{k}\) vanishes. Under the conditions of Lemma A3 below, the expressions \(\mathcal{N}_{a, \ b, \ k}\) will be finite. This will enable us to introduce

$$\begin{aligned} \mathcal{N}_{a, \ b}:=max_{1\le k\le N}\mathcal{N}_{a, \ b, \ k}<\infty . \end{aligned}$$
(5.28)

We have the following elementary statement.

Lemma A3

Let \(N\ge 2, \ 1\le k\le N, \ b_{k}\in {{\mathbb {R}}}, \ b_{k}\ne 0, \ 1\le l\le N-1\) and

\({G_{k}(x): I\rightarrow {{\mathbb {R}}}, \ G_{k}(x)\in C(I), \ \frac{dG_{k}(x)}{dx}\in L^{1}(I), \ G_{k}(0)=G_{k}(2\pi ).}\)

  1. (a)

    Let \(a_{k}>0\) for \(1\le k\le l\). Then \(\mathcal{N}_{a, \ b, \ k}<\infty .\)

  2. (b)

    If \(a_{k}=0\) for \(l+1\le k\le N\) then \(\mathcal{N}_{0, \ b, \ k}<\infty \) if and only if the orthogonality relation

    $$\begin{aligned} (G_{k}(x),1)_{L^{2}(I)}=0 \end{aligned}$$
    (5.29)

    holds.

Proof

It can be easily checked that in both cases (a) and (b) of our lemma under the given conditions we have

$$\begin{aligned} \frac{n^{2}G_{k, n}}{|n|-a_{k}-ib_{k}n}\in l^{\infty }, \quad 1\le k\le N. \end{aligned}$$
(5.30)

Clearly, \({\frac{n}{|n|-a_{k}-ib_{k}n}\in l^{\infty }}\) and \(nG_{k, n}\in l^{\infty }\) via inequality (5.26) along with the one of the stated assumptions. Hence (5.30) is valid.

Let us establish the statement of the part a) of the lemma. For that purpose, we need to consider the expression

$$\begin{aligned} \frac{|G_{k, n}|}{\sqrt{(|n|-a_{k})^{2}+b_{k}^{2}n^{2}}}, \quad 1\le k\le l. \end{aligned}$$
(5.31)

Evidently, the denominator in (5.31) can be easily bounded from below by a positive constant. The numerator in (5.31) can be trivially estimated from above by means of (5.24) along with (5.25). Hence, \(\mathcal{N}_{a, \ b, \ k}<\infty \) in the case when \(a_{k}>0\). Let us demonstrate the validity of the result of the lemma in the situation when \(a_{k}=0\). Obviously,

$$\begin{aligned} \Bigg |\frac{G_{k, n}}{|n|-ib_{k}n}\Bigg |, \quad l+1\le k\le N \end{aligned}$$

is bounded if and only if \(G_{k, 0}=0\). This is equivalent to orthogonality condition (5.29). In this case we easily arrive at for \(l+1\le k\le N\) that

$$\begin{aligned} \Bigg |\frac{G_{k, n}}{|n|-ib_{k}n}\Bigg |\le \frac{1}{\sqrt{2\pi }|n|} \frac{\Vert G_{k}(x)\Vert _{L^{1}(I)}}{\sqrt{1+b_{k}^{2}}}\le \sqrt{2\pi }\frac{\Vert G_{k}(x)\Vert _{C(I)}}{\sqrt{1+b_{k}^{2}}}<\infty \end{aligned}$$

by virtue of (5.24) and (5.25) under our assumptions. \(\square \)

In order to study the systems of Eq. (2.10), we will use

$$\begin{aligned} \mathcal{N}_{a, \ b, \ k}^{(m)}:=max \Bigg \{ \Bigg \Vert \frac{G_{k, m, n}}{|n|-a_{k}-ib_{k}n} \Bigg \Vert _{l^{\infty }}, \quad \Bigg \Vert \frac{n^{2}G_{k, m, n}}{|n|-a_{k}-ib_{k}n}\Bigg \Vert _{l^{\infty }}\Bigg \}, \end{aligned}$$
(5.32)

where \(a_{k}\ge 0, \ b_{k}\in {{\mathbb {R}}}, \ b_{k}\ne 0\) are the constants, \(1\le k\le N, \ N\ge 2\) and \(m\in {{\mathbb {N}}}\). Under the assumptions of Lemma A4 below, we have that all \(\mathcal{N}_{a, \ b, \ k}^{(m)}<\infty \). This will allow us to introduce

$$\begin{aligned} \mathcal{N}_{a, \ b}^{(m)}=max_{1\le k\le N}\mathcal{N}_{a, \ b, \ k}^{(m)}, \quad m\in {{\mathbb {N}}}. \end{aligned}$$
(5.33)

We conclude the work with the following auxiliary proposition.

Lemma A4

Let \(m\in {{\mathbb {N}}}, \ N\ge 2, \ 1\le k\le N, \ b_{k}\in {{\mathbb {R}}}, \ b_{k}\ne 0, \ 1\le l\le N-1\) and

$$\begin{aligned} G_{k, m}(x): I\rightarrow {{\mathbb {R}}}, \quad G_{k, m}(x)\in C(I), \quad \frac{dG_{k, m}(x)}{dx}\in L^{1}(I), \quad G_{k, m}(0)=G_{k, m}(2\pi ), \end{aligned}$$

and

$$\begin{aligned} G_{k, m}(x)\rightarrow G_{k}(x) \quad in \quad C(I), \quad \frac{dG_{k, m}(x)}{dx}\rightarrow \frac{dG_{k}(x)}{dx} \quad in \quad L^{1}(I) \end{aligned}$$

as \(m\rightarrow \infty \).

  1. (a)

    Let \(a_{k}>0\) for \(1\le k\le l\).

  2. (b)

    Let \(a_{k}=0\) for \(l+1\le k\le N\) and in addition

    $$\begin{aligned} (G_{k, m}(x), 1)_{L^{2}(I)}=0, \quad m\in {{\mathbb {N}}}. \end{aligned}$$
    (5.34)

We also assume that

$$\begin{aligned} 2\sqrt{\pi }\mathcal{N}_{a, \ b}^{(m)}L\le 1-\varepsilon \end{aligned}$$
(5.35)

is valid for all \(m\in {{\mathbb {N}}}\) as well with some fixed \(0<\varepsilon <1\). Then, for all \(1\le k\le N\), we have

$$\begin{aligned} \frac{G_{k, m, n}}{|n|-a_{k}-ib_{k}n}\rightarrow \frac{G_{k, n}}{|n|-a_{k}-ib_{k}n}, \quad m\rightarrow \infty ,\end{aligned}$$
(5.36)
$$\begin{aligned} \frac{n^{2}G_{k, m, n}}{|n|-a_{k}-ib_{k}n}\rightarrow \frac{n^{2}G_{k, n}}{|n|-a_{k}-ib_{k}n}, \quad m\rightarrow \infty \end{aligned}$$
(5.37)

in \(l^{\infty }\), so that

$$\begin{aligned} \Bigg \Vert \frac{G_{k, m, n}}{|n|-a_{k}-ib_{k}n}\Bigg \Vert _{l^{\infty }}\rightarrow \Bigg \Vert \frac{G_{k, n}}{|n|-a_{k}-ib_{k}n}\Bigg \Vert _{l^{\infty }}, \quad m\rightarrow \infty , \end{aligned}$$
(5.38)
$$\begin{aligned} \Bigg \Vert \frac{n^{2}G_{k, m, n}}{|n|-a_{k}-ib_{k}n}\Bigg \Vert _{l^{\infty }}\rightarrow \Bigg \Vert \frac{n^{2}G_{k, n}}{|n|-a_{k}-ib_{k}n}\Bigg \Vert _{l^{\infty }}, \quad m\rightarrow \infty . \end{aligned}$$
(5.39)

Furthermore, the estimate

$$\begin{aligned} 2\sqrt{\pi }\mathcal{N}_{a, \ b}L\le 1-\varepsilon \end{aligned}$$
(5.40)

holds.

Proof

Obviously, under the stated assumptions, the limiting kernels \(G_{k}(x), \ 1\le k\le N\) are periodic as well. Indeed, we easily obtain

$$\begin{aligned} |G_{k}(0)-G_{k}(2\pi )|\le & {} |G_{k}(0)-G_{k, m}(0)|\nonumber \\&+\,|G_{k,m}(2\pi )-G_{k}(2\pi )|\le 2\Vert G_{k, m}(x)-G_{k}(x)\Vert _{C(I)}\rightarrow 0 \end{aligned}$$

as \(m\rightarrow \infty \) as assumed. Thus, \(G_{k}(0)=G_{k}(2\pi ), \ 1\le k\le N\). By virtue of (5.24) along with (5.25) we arrive at

$$\begin{aligned} \Vert G_{k, m, n}-G_{k, n}\Vert _{l^{\infty }}\le & {} \frac{1}{\sqrt{2\pi }}\Vert G_{k, m}-G_{k}\Vert _{L^{1}(I)}\nonumber \\\le & {} \sqrt{2\pi }\Vert G_{k, m}-G_{k}\Vert _{C(I)}\rightarrow 0, \quad m\rightarrow \infty \end{aligned}$$
(5.41)

due to the one of our assumptions. It can be trivially checked that the statements of (5.36) and (5.37) will imply (5.38) and (5.39) respectively via the triangle inequality. Using (5.26), we obtain the estimate from above

$$\begin{aligned} \Bigg \Vert \frac{n^{2}G_{k, m, n}}{|n|-a_{k}-ib_{k}n}-\frac{n^{2}G_{k, n}}{|n|-a_{k}-ib_{k} n}\Bigg \Vert _{l^{\infty }}\le & {} \frac{1}{\sqrt{2\pi }}\Bigg \Vert \frac{n}{|n|-a_{k}-ib_{k}n} \Bigg \Vert _{l^{\infty }}\\&\Bigg \Vert \frac{dG_{k, m}(x)}{dx}-\frac{dG_{k}(x)}{dx}\Bigg \Vert _ {L^{1}(I)}, \end{aligned}$$

which tends to zero as \(m\rightarrow \infty \) as assumed, so that (5.37) is valid. Let us establish (5.36) in the situation a) when \(a_{k}>0\). For that purpose, we need to treat

$$\begin{aligned} \frac{|G_{k, m, n}-G_{k, n}|}{\sqrt{(|n|-a_{k})^{2}+b_{k}^{2}n^{2}}}, \quad 1\le k \le l. \end{aligned}$$
(5.42)

Obviously, the denominator of (5.42) can be bounded from below by a positive constant and the numerator estimated from above via (5.41). This gives us (5.36) for \(a_{k}>0\).

Let us demonstrate the validity of (5.36) in the case case b) when \(a_{k}=0\). By means of the one of the given assumptions, we have orthogonality conditions (5.34). It can be trivially checked that the analogical relations holds in the limit. Indeed,

$$\begin{aligned} |(G_{k}(x), 1)_{L^{2}(I)}|= & {} |(G_{k}(x)\nonumber \\&-\,G_{k, m}(x),1)_{L^{2}(I)}|\le 2\pi \Vert G_{k, m}(x)-G_{k}(x)\Vert _{C(I)}\rightarrow 0, \quad m\rightarrow \infty \end{aligned}$$

via the one of our assumptions. Thus,

$$\begin{aligned} (G_{k}(x), 1)_{L^{2}(I)}=0, \quad l+1\le k\le N. \end{aligned}$$

This is equivalent to \(G_{k, 0}=0, \ l+1\le k\le N\). Evidently, \(G_{k, m, 0}=0, \ l+1\le k\le N, \ m\in {{\mathbb {N}}}\) by virtue of orthogonality condition (5.34). Using (5.41), we easily obtain that

$$\begin{aligned} \Bigg |\frac{G_{k, m, n}-G_{k, n}}{|n|-ib_{k}n}\Bigg |\le \frac{\sqrt{2\pi } \Vert G_{k, m}(x)-G_{k}(x)\Vert _{C(I)}}{\sqrt{1+b_{k}^{2}}}. \end{aligned}$$

Since the norm in the right side of this estimate from above tends to zero as \(m\rightarrow \infty \), (5.36) holds in the case when \(a_{k}=0\) as well. Clearly, under the stated assumptions we have

$$\begin{aligned} \mathcal{N}_{a, \ b, \ k}<\infty , \quad \mathcal{N}_{a, \ b, \ k}^{(m)}<\infty , \quad m\in {{\mathbb {N}}}, \quad 1\le k\le N, \quad a_{k}\ge 0, \quad b_{k}\in {{\mathbb {R}}}, \quad b_{k}\ne 0 \end{aligned}$$

by virtue of the result of our Lemma A3 above. We assume the validity of upper bound (5.35). A simple limiting argument using (5.38) and (5.39) gives us (5.40). \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efendiev, M., Vougalter, V. Existence of solutions for some systems of integro-differential equations with transport and superdiffusion. Anal.Math.Phys. 12, 110 (2022). https://doi.org/10.1007/s13324-022-00721-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00721-6

Keywords

Mathematics Subject Classification

Navigation